A Predictive Model for Student Performance in Classrooms Using Student
Interactions With an eTextbook
- URL: http://arxiv.org/abs/2203.03713v1
- Date: Wed, 16 Feb 2022 11:59:53 GMT
- Title: A Predictive Model for Student Performance in Classrooms Using Student
Interactions With an eTextbook
- Authors: Ahmed Abd Elrahman, Taysir Hassan A Soliman, Ahmed I. Taloba, and
Mohammed F. Farghally
- Abstract summary: This paper proposes a new model for predicting student performance based on an analysis of how students interact with an interactive online eTextbook.
To build the proposed model, we evaluated the most popular classification and regression algorithms on data from a data structures and algorithms course.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of online eTextbooks and Massive Open Online Courses (MOOCs), a
huge amount of data has been collected related to students' learning. With the
careful analysis of this data, educators can gain useful insights into the
performance of their students and their behavior in learning a particular
topic. This paper proposes a new model for predicting student performance based
on an analysis of how students interact with an interactive online eTextbook.
By being able to predict students' performance early in the course, educators
can easily identify students at risk and provide a suitable intervention. We
considered two main issues the prediction of good/bad performance and the
prediction of the final exam grade. To build the proposed model, we evaluated
the most popular classification and regression algorithms on data from a data
structures and algorithms course (CS2) offered in a large public research
university. Random Forest Regression and Multiple Linear Regression have been
applied in Regression. While Logistic Regression, decision tree, Random Forest
Classifier, K Nearest Neighbors, and Support Vector Machine have been applied
in classification.
Related papers
- Detecting Unsuccessful Students in Cybersecurity Exercises in Two Different Learning Environments [0.37729165787434493]
This paper develops automated tools to predict when a student is having difficulty.
In a potential application, such models can aid instructors in detecting struggling students and providing targeted help.
arXiv Detail & Related papers (2024-08-16T04:57:54Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - ClickTree: A Tree-based Method for Predicting Math Students' Performance Based on Clickstream Data [0.0]
We developed ClickTree, a tree-based methodology, to predict student performance in mathematical assignments based on students' clickstream data.
The developed method achieved an AUC of 0.78844 in the Educational Data Mining Cup 2023 and ranked second in the competition.
Students who performed well in answering end-unit assignment problems engaged more with in-unit assignments and answered more problems correctly, while those who struggled had higher tutoring request rate.
arXiv Detail & Related papers (2024-03-01T23:39:03Z) - Enhancing the Performance of Automated Grade Prediction in MOOC using
Graph Representation Learning [3.4882560718166626]
Massive Open Online Courses (MOOCs) have gained significant traction as a rapidly growing phenomenon in online learning.
Current automated assessment approaches overlook the structural links between different entities involved in the downstream tasks.
We construct a unique knowledge graph for a large MOOC dataset, which will be publicly available to the research community.
arXiv Detail & Related papers (2023-10-18T19:27:39Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Generalisable Methods for Early Prediction in Interactive Simulations
for Education [5.725477071353353]
Classifying students' interaction data in the simulations based on their expected performance has the potential to enable adaptive guidance.
We first measure the students' conceptual understanding through their in-task performance.
Then, we suggest a novel type of features that, starting from clickstream data, encodes both the state of the simulation and the action performed by the student.
arXiv Detail & Related papers (2022-07-04T14:46:56Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Predicting Seriousness of Injury in a Traffic Accident: A New Imbalanced
Dataset and Benchmark [62.997667081978825]
The paper introduces a new dataset to assess the performance of machine learning algorithms in the prediction of the seriousness of injury in a traffic accident.
The dataset is created by aggregating publicly available datasets from the UK Department for Transport.
arXiv Detail & Related papers (2022-05-20T21:15:26Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - A framework for predicting, interpreting, and improving Learning
Outcomes [0.0]
We develop an Embibe Score Quotient model (ESQ) to predict test scores based on observed academic, behavioral and test-taking features of a student.
ESQ can be used to predict the future scoring potential of a student as well as offer personalized learning nudges.
arXiv Detail & Related papers (2020-10-06T11:22:27Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
We propose a novel approach using Graph Neural Networks (GNNs) to achieve better student performance prediction in interactive online question pools.
Specifically, we model the relationship between students and questions using student interactions to construct the student-interaction-question network.
We evaluate the effectiveness of our approach on a real-world dataset consisting of 104,113 mouse trajectories generated in the problem-solving process of over 4000 students on 1631 questions.
arXiv Detail & Related papers (2020-08-04T14:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.