論文の概要: Series Saliency: Temporal Interpretation for Multivariate Time Series
Forecasting
- arxiv url: http://arxiv.org/abs/2012.09324v1
- Date: Wed, 16 Dec 2020 23:48:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 03:09:52.550927
- Title: Series Saliency: Temporal Interpretation for Multivariate Time Series
Forecasting
- Title(参考訳): series saliency:temporal interpretation for multivariate time series forecasting (特集 時系列予測)
- Authors: Qingyi Pan, Wenbo Hu, Jun Zhu
- Abstract要約: 時系列予測のための時系列解釈のためのシリーズサリエンシーフレームワークを提示する。
時系列のスライディングウィンドウから「時系列画像」を抽出することにより、サリエンシーマップのセグメンテーションを適用する。
本フレームワークは,時系列予測タスクの時間的解釈を生成し,正確な時系列予測を生成する。
- 参考スコア(独自算出の注目度): 30.054015098590874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting is an important yet challenging task. Though deep
learning methods have recently been developed to give superior forecasting
results, it is crucial to improve the interpretability of time series models.
Previous interpretation methods, including the methods for general neural
networks and attention-based methods, mainly consider the interpretation in the
feature dimension while ignoring the crucial temporal dimension. In this paper,
we present the series saliency framework for temporal interpretation for
multivariate time series forecasting, which considers the forecasting
interpretation in both feature and temporal dimensions. By extracting the
"series images" from the sliding windows of the time series, we apply the
saliency map segmentation following the smallest destroying region principle.
The series saliency framework can be employed to any well-defined deep learning
models and works as a data augmentation to get more accurate forecasts.
Experimental results on several real datasets demonstrate that our framework
generates temporal interpretations for the time series forecasting task while
produces accurate time series forecast.
- Abstract(参考訳): 時系列予測は重要だが、難しい課題である。
近年,予測結果に優れた深層学習手法が開発されているが,時系列モデルの解釈性の向上が不可欠である。
一般的なニューラルネットワークや注意に基づく手法を含む以前の解釈法は、重要な時間次元を無視しながら特徴次元の解釈を主に考慮している。
本稿では,多変量時系列予測における時間的解釈のための時系列サリエンシ・フレームワークについて述べる。
時系列のスライディングウィンドウから「時系列画像」を抽出することにより、最小の破壊領域原理に従って、サリエンシーマップのセグメンテーションを適用する。
series saliency frameworkは、明確に定義されたディープラーニングモデルに採用することができ、より正確な予測を得るためにデータ拡張として機能する。
いくつかの実データセットに対する実験結果から,本フレームワークは時系列予測タスクの時間的解釈を生成し,正確な時系列予測を生成する。
関連論文リスト
- VQ-AR: Vector Quantized Autoregressive Probabilistic Time Series
Forecasting [10.605719154114354]
時系列モデルは過去の予測を正確に予測することを目的としており、そこではビジネス上の意思決定のような重要な下流のタスクに予測が使用される。
本稿では,新しい自己回帰型アーキテクチャであるVQ-ARを提案する。
論文 参考訳(メタデータ) (2022-05-31T15:43:46Z) - Monitoring Time Series With Missing Values: a Deep Probabilistic
Approach [1.90365714903665]
本研究では,高次元時系列における予測の最先端手法と不確実性の完全な確率的ハンドリングを組み合わせた時系列モニタリングのための新しいアーキテクチャを提案する。
本稿では、時系列予測と新規性検出のアーキテクチャの利点を、特に部分的に欠落したデータで示し、実世界のデータセットにおける最先端のアプローチとアーキテクチャを実証的に評価し比較する。
論文 参考訳(メタデータ) (2022-03-09T17:53:47Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
複数の手法を評価し、それらの方法の1つを選択することや、最良の予測を生成するためのアンサンブルを選択するのが一般的である。
本稿では,低ランク時間行列係数化と潜在時系列上での最適モデル選択を組み合わせることで,短時間の高次元時系列データを予測するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T11:39:21Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
メタグローバルローカル自動回帰(Meta-GLAR)と呼ばれる新しい予測手法を導入する。
それは、リカレントニューラルネットワーク(RNN)によって生成された表現からワンステップアヘッド予測へのマッピングをクローズドフォームで学習することで、各時系列に適応する。
本手法は,先行研究で報告されたサンプル外予測精度において,最先端の手法と競合する。
論文 参考訳(メタデータ) (2021-11-05T11:45:02Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
我々は,異なる時刻スタンプにおける変数の相互依存性を利用するための,シンプルで効率的なインスタンス単位のグラフベースのフレームワークを提案する。
私たちのフレームワークのキーとなる考え方は、異なる変数の履歴時系列から予測すべき現在の時系列に情報を集約することです。
論文 参考訳(メタデータ) (2021-09-14T07:38:35Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
時系列データ(英: time series)とは、時系列データの一種で、時系列で記録された観測の集合である。
既存のディープラーニング技術では、時系列解析にジェネリックシーケンスモデルを使用しており、そのユニークな性質を無視している。
本稿では,新しいニューラルネットワークアーキテクチャを提案し,時系列予測問題に適用し,時間的モデリングのための複数の解像度でサンプル畳み込みと相互作用を行う。
論文 参考訳(メタデータ) (2021-06-17T08:15:04Z) - Interpretable Time-series Representation Learning With Multi-Level
Disentanglement [56.38489708031278]
Disentangle Time Series (DTS)は、シーケンシャルデータのための新しいDisentanglement Enhanceingフレームワークである。
DTSは時系列の解釈可能な表現として階層的意味概念を生成する。
DTSは、セマンティック概念の解釈性が高く、下流アプリケーションで優れたパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-05-17T22:02:24Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。