論文の概要: Series Saliency: Temporal Interpretation for Multivariate Time Series
Forecasting
- arxiv url: http://arxiv.org/abs/2012.09324v1
- Date: Wed, 16 Dec 2020 23:48:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 03:09:52.550927
- Title: Series Saliency: Temporal Interpretation for Multivariate Time Series
Forecasting
- Title(参考訳): series saliency:temporal interpretation for multivariate time series forecasting (特集 時系列予測)
- Authors: Qingyi Pan, Wenbo Hu, Jun Zhu
- Abstract要約: 時系列予測のための時系列解釈のためのシリーズサリエンシーフレームワークを提示する。
時系列のスライディングウィンドウから「時系列画像」を抽出することにより、サリエンシーマップのセグメンテーションを適用する。
本フレームワークは,時系列予測タスクの時間的解釈を生成し,正確な時系列予測を生成する。
- 参考スコア(独自算出の注目度): 30.054015098590874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting is an important yet challenging task. Though deep
learning methods have recently been developed to give superior forecasting
results, it is crucial to improve the interpretability of time series models.
Previous interpretation methods, including the methods for general neural
networks and attention-based methods, mainly consider the interpretation in the
feature dimension while ignoring the crucial temporal dimension. In this paper,
we present the series saliency framework for temporal interpretation for
multivariate time series forecasting, which considers the forecasting
interpretation in both feature and temporal dimensions. By extracting the
"series images" from the sliding windows of the time series, we apply the
saliency map segmentation following the smallest destroying region principle.
The series saliency framework can be employed to any well-defined deep learning
models and works as a data augmentation to get more accurate forecasts.
Experimental results on several real datasets demonstrate that our framework
generates temporal interpretations for the time series forecasting task while
produces accurate time series forecast.
- Abstract(参考訳): 時系列予測は重要だが、難しい課題である。
近年,予測結果に優れた深層学習手法が開発されているが,時系列モデルの解釈性の向上が不可欠である。
一般的なニューラルネットワークや注意に基づく手法を含む以前の解釈法は、重要な時間次元を無視しながら特徴次元の解釈を主に考慮している。
本稿では,多変量時系列予測における時間的解釈のための時系列サリエンシ・フレームワークについて述べる。
時系列のスライディングウィンドウから「時系列画像」を抽出することにより、最小の破壊領域原理に従って、サリエンシーマップのセグメンテーションを適用する。
series saliency frameworkは、明確に定義されたディープラーニングモデルに採用することができ、より正確な予測を得るためにデータ拡張として機能する。
いくつかの実データセットに対する実験結果から,本フレームワークは時系列予測タスクの時間的解釈を生成し,正確な時系列予測を生成する。
関連論文リスト
- Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - MPPN: Multi-Resolution Periodic Pattern Network For Long-Term Time
Series Forecasting [19.573651104129443]
長期の時系列予測は、様々な現実のシナリオにおいて重要な役割を果たす。
近年の時系列予測の深層学習手法は,分解法やサンプリング法により時系列の複雑なパターンを捉える傾向にある。
本稿では,MPPN(Multi- resolution Periodic Pattern Network)という,長期連続予測のための新しいディープラーニングネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-12T07:00:37Z) - Ripple: Concept-Based Interpretation for Raw Time Series Models in
Education [5.374524134699487]
時系列は、教育予測タスクにおいて最も一般的な入力データである。
本稿では,グラフニューラルネットワークを用いた不規則な多変量時系列モデリングを用いて,同等あるいはより良い精度を実現する手法を提案する。
教育領域におけるこれらの進歩を分析し,早期学生のパフォーマンス予測の課題に対処する。
論文 参考訳(メタデータ) (2022-12-02T12:26:00Z) - Respecting Time Series Properties Makes Deep Time Series Forecasting
Perfect [3.830797055092574]
時系列予測モデルにおいて、時間的特徴をどのように扱うかが重要な問題である。
本稿では,3つの有意だが未確立の深層時系列予測機構を厳密に分析する。
上記の分析に基づいて,新しい時系列予測ネットワーク,すなわちRTNetを提案する。
論文 参考訳(メタデータ) (2022-07-22T08:34:31Z) - Split Time Series into Patches: Rethinking Long-term Series Forecasting
with Dateformer [17.454822366228335]
時間は時系列の最も重要な特徴の1つだが、あまり注目されていない。
本稿では、上記のプラクティスに従うのではなく、モデリング時間に注意を向けるDateformerを提案する。
ディザフォーマーは、40%の顕著な相対的な改善で最先端の精度を達成し、最大信頼性予測範囲を半年レベルに拡大する。
論文 参考訳(メタデータ) (2022-07-12T08:58:44Z) - Monitoring Time Series With Missing Values: a Deep Probabilistic
Approach [1.90365714903665]
本研究では,高次元時系列における予測の最先端手法と不確実性の完全な確率的ハンドリングを組み合わせた時系列モニタリングのための新しいアーキテクチャを提案する。
本稿では、時系列予測と新規性検出のアーキテクチャの利点を、特に部分的に欠落したデータで示し、実世界のデータセットにおける最先端のアプローチとアーキテクチャを実証的に評価し比較する。
論文 参考訳(メタデータ) (2022-03-09T17:53:47Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。