Floquet engineering of optical nonlinearities: a quantum many-body
approach
- URL: http://arxiv.org/abs/2203.05554v2
- Date: Tue, 15 Mar 2022 20:51:02 GMT
- Title: Floquet engineering of optical nonlinearities: a quantum many-body
approach
- Authors: Nathan Goldman
- Abstract summary: Floquet-engineering has been extensively applied to a wide range of classical and quantum settings.
We show that effective optical nonlinearities can be created by subjecting the light field to a repeated pulse sequence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subjecting a physical system to a time-periodic drive can substantially
modify its properties and applications. This Floquet-engineering approach has
been extensively applied to a wide range of classical and quantum settings in
view of designing synthetic systems with exotic properties. Considering a
general class of two-mode nonlinear optical devices, we show that effective
optical nonlinearities can be created by subjecting the light field to a
repeated pulse sequence, which couples the two modes in a fast and
time-periodic manner. The strength of these drive-induced optical
nonlinearities, which include an emerging four-wave mixing, can be varied by
simply adjusting the pulse sequence. This leads to topological changes in the
system's phase space, which can be detected through light intensity and phase
measurements. Our proposal builds on an effective-Hamiltonian approach, which
derives from a parent quantum many-body Hamiltonian describing driven
interacting bosons. As a corollary, our results equally apply to Bose-Einstein
condensates in driven double-well potentials, where pair tunneling effectively
arises from the periodic pulse sequence. Our scheme offers a practical route to
engineer and finely tune exotic nonlinearities and interactions in photonics
and ultracold quantum gases.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Harnessing spontaneous emission of correlated photon pairs from ladder-type giant atoms [5.498509152557573]
We show that a ladder-type three-level giant atom spontaneously emits strongly correlated photon pairs with high efficiency.
By encoding local phases into the optimal coupling sequence, directional two-photon correlated transfer can be achieved.
Such correlated photon pairs have great potential applications for quantum information processing.
arXiv Detail & Related papers (2024-06-18T09:03:00Z) - Optoacoustic entanglement in a continuous Brillouin-active solid state
system [0.0]
Entanglement in hybrid quantum systems comprised of fundamentally different degrees of freedom is of interest.
We propose to engineer bipartite entanglement between traveling acoustic phonons in a Brillouin active solid state system.
The proposed mechanism presents an important feature in that it does not require initial preparation of the quantum ground state of the phonon mode.
arXiv Detail & Related papers (2024-01-19T12:38:15Z) - Floquet-engineered nonlinearities and controllable pair-hopping
processes: From optical Kerr cavities to correlated quantum matter [0.0]
This work explores the possibility of creating and controlling unconventional nonlinearities by periodic driving.
By means of a parent quantum many-body description, we demonstrate that such driven systems are well captured by an effective NLSE.
We analyze these intriguing properties both in the weakly-interacting (mean-field) regime, captured by the effective NLSE, and in the strongly-correlated quantum regime.
arXiv Detail & Related papers (2023-04-12T13:56:27Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Efficient simulation of ultrafast quantum nonlinear optics with matrix
product states [0.0]
We develop an algorithm to unravel the MPS quantum state into constituent temporal supermodes.
We observe the development of non-classical Wigner-function negativity in the solitonic mode and quantum corrections to the semiclassical dynamics of the pulse.
arXiv Detail & Related papers (2021-02-11T09:15:24Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.