論文の概要: Incorporating Heterogeneous User Behaviors and Social Influences for
Predictive Analysis
- arxiv url: http://arxiv.org/abs/2207.11776v1
- Date: Sun, 24 Jul 2022 17:05:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-26 13:36:47.349458
- Title: Incorporating Heterogeneous User Behaviors and Social Influences for
Predictive Analysis
- Title(参考訳): 不均質なユーザー行動と社会的影響を組み込んだ予測分析
- Authors: Haobing Liu, Yanmin Zhu, Chunyang Wang, Jianyu Ding, Jiadi Yu, Feilong
Tang
- Abstract要約: 我々は,行動予測に異質なユーザ行動と社会的影響を取り入れることを目指している。
本稿では,行動シーケンスのコンテキストを考慮したLong-Short Term Memory (LSTM)を提案する。
残差学習に基づくデコーダは、社会的行動表現に基づいて、複数の高次クロス機能を自動的に構築するように設計されている。
- 参考スコア(独自算出の注目度): 32.31161268928372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Behavior prediction based on historical behavioral data have practical
real-world significance. It has been applied in recommendation, predicting
academic performance, etc. With the refinement of user data description, the
development of new functions, and the fusion of multiple data sources,
heterogeneous behavioral data which contain multiple types of behaviors become
more and more common. In this paper, we aim to incorporate heterogeneous user
behaviors and social influences for behavior predictions. To this end, this
paper proposes a variant of Long-Short Term Memory (LSTM) which can consider
context information while modeling a behavior sequence, a projection mechanism
which can model multi-faceted relationships among different types of behaviors,
and a multi-faceted attention mechanism which can dynamically find out
informative periods from different facets. Many kinds of behavioral data belong
to spatio-temporal data. An unsupervised way to construct a social behavior
graph based on spatio-temporal data and to model social influences is proposed.
Moreover, a residual learning-based decoder is designed to automatically
construct multiple high-order cross features based on social behavior
representation and other types of behavior representations. Qualitative and
quantitative experiments on real-world datasets have demonstrated the
effectiveness of this model.
- Abstract(参考訳): 過去の行動データに基づく行動予測は現実的な意義を持っている。
推薦や学業成績の予測などに応用されている。
ユーザデータ記述の洗練、新しい機能の開発、そして複数のデータソースの融合により、複数の種類の振る舞いを含む異種行動データがますます一般的になる。
本稿では,不均一なユーザ行動と社会的影響を組み込んで行動予測を行う。
そこで本稿では,行動シーケンスをモデル化しながらコンテキスト情報を考慮可能なLong-Short Term Memory (LSTM) の変種と,異なる行動タイプ間の多面的関係をモデル化可能なプロジェクション機構と,異なる行動パターンから情報的周期を動的に検出可能な多面的注意機構を提案する。
多くの行動データは時空間データに属する。
時空間データに基づく社会的行動グラフの構築と社会的影響のモデル化のための教師なし手法を提案する。
さらに、残差学習に基づくデコーダは、社会的行動表現やその他の行動表現に基づいて、複数の高次クロス特徴を自動的に構築するように設計されている。
実世界のデータセットに関する定性的かつ定量的な実験は、このモデルの有効性を実証した。
関連論文リスト
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - Personalized Behavior-Aware Transformer for Multi-Behavior Sequential
Recommendation [25.400756652696895]
マルチビヘイビアシーケンスレコメンデーション(MBSR)問題に対するパーソナライズされた行動認識変換フレームワーク(PBAT)を提案する。
PBATは表現層にパーソナライズされた振舞いパターン生成器を開発し,逐次学習のための動的・識別的な振舞いパターンを抽出する。
3つのベンチマークデータセットで実験を行い、その結果、フレームワークの有効性と解釈性を示した。
論文 参考訳(メタデータ) (2024-02-22T12:03:21Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - Multi-Timescale Modeling of Human Behavior [0.18199355648379031]
本稿では,行動情報を複数の時間スケールで処理し,将来の行動を予測するLSTMネットワークアーキテクチャを提案する。
我々は、仮想Minecraftベースのテストベッドでシミュレーションした都市検索・救助シナリオで収集したデータに基づいて、アーキテクチャを評価する。
論文 参考訳(メタデータ) (2022-11-16T15:58:57Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
マルチタイプの行動(例えば、クリック、カートの追加、購入など)は、ほとんどの現実世界のレコメンデーションシナリオに広く存在する。
最先端のマルチ振る舞いモデルは、すべての歴史的相互作用を入力として区別しない振る舞い依存を学習する。
本稿では,多様な行動に対する共有的・行動特異的な関心を学習するための,多目的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-03T05:28:14Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
マルチビヘイビア・インタラクティブなパターンを意識した動的ユーザ・イテム関係学習に取り組む。
本稿では,動的短期および長期のユーザ・イテム対話パターンを共同でキャプチャする,TGT(Temporal Graph Transformer)レコメンデーションフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-06T15:42:54Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
本稿では,複雑で非線形に進化する動的ユーザの嗜好をモデル化する,自己変調型注意ネットワークを提案する。
提案手法がトップNシーケンシャルなレコメンデーションタスクに与える影響を実証的に示すとともに,3つの大規模実世界のデータセットによる結果から,我々のモデルが最先端のパフォーマンスを達成できることを示す。
論文 参考訳(メタデータ) (2022-03-30T03:54:11Z) - SMEMO: Social Memory for Trajectory Forecasting [34.542209630734234]
本稿では、外部記憶装置として機能するエンドツーエンドのトレーニング可能なワーキングメモリに基づくニューラルネットワークを提案する。
提案手法は,異なるエージェントの動き間の説明可能な因果関係を学習し,軌跡予測データセットの最先端結果を得ることができることを示す。
論文 参考訳(メタデータ) (2022-03-23T14:40:20Z) - Exploring Social Posterior Collapse in Variational Autoencoder for
Interaction Modeling [26.01824780050843]
変分オートエンコーダ(VAE)は多エージェント相互作用モデリングに広く応用されている。
VAEは、エージェントの将来の軌跡を予測する際に、歴史的社会的文脈を無視しやすい。
本稿では,ソーシャルな後部崩壊を検知する新しいスパースグラフアテンションメッセージパッシング層を提案する。
論文 参考訳(メタデータ) (2021-12-01T06:20:58Z) - User-Dependent Neural Sequence Models for Continuous-Time Event Data [27.45413274751265]
継続的イベントデータは、個々の行動データ、金融取引、医療健康記録などのアプリケーションで一般的である。
時間変化強度関数をパラメータ化するリカレントニューラルネットワークは、そのようなデータを用いた予測モデリングの最先端技術である。
本稿では,ニューラルマーク点過程モデルの幅広いクラスを,潜伏埋め込みの混合に拡張する。
論文 参考訳(メタデータ) (2020-11-06T08:32:57Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。