論文の概要: SMEMO: Social Memory for Trajectory Forecasting
- arxiv url: http://arxiv.org/abs/2203.12446v2
- Date: Sun, 18 Feb 2024 15:35:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 07:44:34.122391
- Title: SMEMO: Social Memory for Trajectory Forecasting
- Title(参考訳): SMEMO: 軌道予測のためのソーシャルメモリ
- Authors: Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, Alberto
Del Bimbo
- Abstract要約: 本稿では、外部記憶装置として機能するエンドツーエンドのトレーニング可能なワーキングメモリに基づくニューラルネットワークを提案する。
提案手法は,異なるエージェントの動き間の説明可能な因果関係を学習し,軌跡予測データセットの最先端結果を得ることができることを示す。
- 参考スコア(独自算出の注目度): 34.542209630734234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective modeling of human interactions is of utmost importance when
forecasting behaviors such as future trajectories. Each individual, with its
motion, influences surrounding agents since everyone obeys to social
non-written rules such as collision avoidance or group following. In this paper
we model such interactions, which constantly evolve through time, by looking at
the problem from an algorithmic point of view, i.e. as a data manipulation
task. We present a neural network based on an end-to-end trainable working
memory, which acts as an external storage where information about each agent
can be continuously written, updated and recalled. We show that our method is
capable of learning explainable cause-effect relationships between motions of
different agents, obtaining state-of-the-art results on multiple trajectory
forecasting datasets.
- Abstract(参考訳): 人間の相互作用の効果的なモデリングは、将来の軌跡のような行動を予測する際に最も重要である。
それぞれの個人は、その動きによって周囲のエージェントに影響を与え、全員が衝突回避やグループフォローのような社会的に記述されていない規則に従う。
本稿では,アルゴリズム的な観点から,すなわちデータ操作タスクとして問題を見ることにより,時間を通じて常に進化するそのようなインタラクションをモデル化する。
本稿では,各エージェントに関する情報の連続書き込み,更新,リコールが可能な外部ストレージとして機能する,エンドツーエンドのトレーニング可能な作業メモリに基づくニューラルネットワークを提案する。
提案手法は,異なるエージェントの動き間の説明可能な因果関係を学習し,複数の軌道予測データセットの最先端結果を得る。
関連論文リスト
- Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [55.65482030032804]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
提案手法は,軌道予測器が将来の状態を生成するために使用する関係の進化を捉えるために,動的に進化する関係グラフとハイパーグラフを推論する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Holistic Graph-based Motion Prediction [2.365702128814616]
ヘテロジニアスな全体グラフ表現に基づくグラフに基づく動き予測の新しい手法を提案する。
情報は異なるタイプのノードとエッジを通じてエンコードされ、どちらも任意の機能でリッチ化されている。
論文 参考訳(メタデータ) (2023-01-31T10:46:46Z) - Incorporating Heterogeneous User Behaviors and Social Influences for
Predictive Analysis [32.31161268928372]
我々は,行動予測に異質なユーザ行動と社会的影響を取り入れることを目指している。
本稿では,行動シーケンスのコンテキストを考慮したLong-Short Term Memory (LSTM)を提案する。
残差学習に基づくデコーダは、社会的行動表現に基づいて、複数の高次クロス機能を自動的に構築するように設計されている。
論文 参考訳(メタデータ) (2022-07-24T17:05:37Z) - Leveraging Smooth Attention Prior for Multi-Agent Trajectory Prediction [32.970169015894705]
我々は,時間的全変動に基づくマルチエージェントインタラクションの注意モデルを構築した。
我々は,その利点を,合成運転データと自然運転データの両方に対する最先端のアプローチと比較することにより,予測精度の面で示す。
論文 参考訳(メタデータ) (2022-03-08T21:54:28Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - RAIN: Reinforced Hybrid Attention Inference Network for Motion
Forecasting [34.54878390622877]
本稿では,ハイブリットアテンション機構に基づく動的キー情報の選択とランク付けを行う汎用的な動き予測フレームワークを提案する。
このフレームワークは、マルチエージェント軌道予測と人間の動き予測タスクを処理するためにインスタンス化される。
我々は,異なる領域における合成シミュレーションと運動予測ベンチマークの両方について,その枠組みを検証した。
論文 参考訳(メタデータ) (2021-08-03T06:30:30Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Time-series Imputation of Temporally-occluded Multiagent Trajectories [18.862173210927658]
エージェントのサブセットの過去と将来の観測が、他のエージェントの欠落した観察を推定するために使用される、マルチエージェントの時系列計算の問題について検討する。
グラフインプタ(Graph Imputer)と呼ばれる我々の手法は,グラフネットワークと変分オートエンコーダを組み合わせた前方情報と後方情報を利用する。
提案手法は,プロジェクティブカメラモジュールを用いて,オフスクリーンプレーヤの状態推定設定のためのモデルをトレーニングし,評価する。
論文 参考訳(メタデータ) (2021-06-08T09:58:43Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
本稿では,情報とアーキテクチャの制約を,確率論的モデリング文献のアイデアと組み合わせて行動の事前学習を行う方法について考察する。
このような潜伏変数の定式化が階層的強化学習(HRL)と相互情報と好奇心に基づく目的との関係について論じる。
シミュレーションされた連続制御領域に適用することで,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-10-27T13:17:18Z) - End-to-end Contextual Perception and Prediction with Interaction
Transformer [79.14001602890417]
我々は3次元物体の検出と将来の動きを自動運転の文脈で予測する問題に取り組む。
空間的・時間的依存関係を捉えるために,新しいトランスフォーマーアーキテクチャを用いたリカレントニューラルネットワークを提案する。
私たちのモデルはエンドツーエンドでトレーニングでき、リアルタイムで実行されます。
論文 参考訳(メタデータ) (2020-08-13T14:30:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。