論文の概要: A Deep Dive into Deep Cluster
- arxiv url: http://arxiv.org/abs/2207.11839v1
- Date: Sun, 24 Jul 2022 22:55:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-26 14:40:21.500256
- Title: A Deep Dive into Deep Cluster
- Title(参考訳): deep cluster (複数形 deep clusters)
- Authors: Ahmad Mustapha, Wael Khreich, Wasim Masr
- Abstract要約: DeepClusterは、ビジュアル表現のシンプルでスケーラブルな教師なし事前トレーニングである。
本稿では,DeepClusterの収束と性能が,畳み込み層のランダムフィルタの品質と選択されたクラスタ数の相互作用に依存することを示す。
- 参考スコア(独自算出の注目度): 0.2578242050187029
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep Learning has demonstrated a significant improvement against traditional
machine learning approaches in different domains such as image and speech
recognition. Their success on benchmark datasets is transferred to the
real-world through pretrained models by practitioners. Pretraining visual
models using supervised learning requires a significant amount of expensive
data annotation. To tackle this limitation, DeepCluster - a simple and scalable
unsupervised pretraining of visual representations - has been proposed.
However, the underlying work of the model is not yet well understood. In this
paper, we analyze DeepCluster internals and exhaustively evaluate the impact of
various hyperparameters over a wide range of values on three different
datasets. Accordingly, we propose an explanation of why the algorithm works in
practice. We also show that DeepCluster convergence and performance highly
depend on the interplay between the quality of the randomly initialized filters
of the convolutional layer and the selected number of clusters. Furthermore, we
demonstrate that continuous clustering is not critical for DeepCluster
convergence. Therefore, early stopping of the clustering phase will reduce the
training time and allow the algorithm to scale to large datasets. Finally, we
derive plausible hyperparameter selection criteria in a semi-supervised
setting.
- Abstract(参考訳): ディープラーニングは、画像や音声認識など、さまざまな分野の従来の機械学習アプローチに対して、大幅に改善されている。
ベンチマークデータセットでの彼らの成功は、実践者が事前訓練したモデルを通じて現実世界に転送される。
教師付き学習を用いて視覚モデルを事前学習するには、膨大な量の高価なデータアノテーションが必要である。
この制限に対処するため、ビジュアル表現のシンプルでスケーラブルな教師なし事前トレーニングであるDeepClusterが提案されている。
しかし、モデルの基礎となる作業はまだよく分かっていない。
本稿では,DeepClusterの内部を解析し,3つの異なるデータセット上の幅広い値に対する様々なハイパーパラメータの影響を徹底的に評価する。
そこで本研究では,アルゴリズムが実際に動作する理由を説明する。
また、DeepClusterの収束と性能は、畳み込み層のランダム初期化フィルタの品質と選択されたクラスタ数の相互作用に大きく依存していることを示す。
さらに, 連続クラスタリングがDeepCluster収束に重要でないことを示す。
したがって、クラスタリングフェーズの早期停止はトレーニング時間を短縮し、アルゴリズムを大規模データセットに拡張可能にする。
最後に、半教師付き設定において、妥当なハイパーパラメータ選択基準を導出する。
関連論文リスト
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Snapshot Spectral Clustering -- a costless approach to deep clustering
ensembles generation [0.0]
本稿では,新しいディープ・クラスタリング・アンサンブル法であるSnapshot Spectral Clusteringを提案する。
アンサンブルを作成する際の計算コストを最小化しながら、複数のデータビューを組み合わせることで得られる利益を最大化するように設計されている。
論文 参考訳(メタデータ) (2023-07-17T16:01:22Z) - XAI for Self-supervised Clustering of Wireless Spectrum Activity [0.5809784853115825]
本稿では,深層クラスタリング,自己教師型学習アーキテクチャの方法論を提案する。
表現学習部では,入力データの関心領域の解釈にガイドバックプロパゲーションを用いる。
クラスタリングの部分は、クラスタリングの結果を説明するために、Shallow Treesに依存しています。
最後に、データ固有の視覚化部は、各クラスタと入力データとの接続を関連機能をトラフすることを可能にする。
論文 参考訳(メタデータ) (2023-05-17T08:56:43Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
論文 参考訳(メタデータ) (2022-10-09T02:31:32Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Large-Scale Hyperspectral Image Clustering Using Contrastive Learning [18.473767002905433]
SSCC(Spectral-Spatial Contrastive Clustering)という,スケーラブルなオンラインクラスタリングモデルを提案する。
我々は、スペクトル空間拡張プールから二重コントラスト学習を行うために、クラスタ番号の次元を持つ投影ヘッドからなる対称双対ニューラルネットワークを利用する。
結果として得られたアプローチは、バッチワイズ最適化によってエンドツーエンドでトレーニングされ、大規模なデータで堅牢になり、見当たらないデータに対して優れた一般化能力が得られる。
論文 参考訳(メタデータ) (2021-11-15T17:50:06Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDECは、共同統計表現学習とクラスタリングのための教師なしのフレームワークである。
実験により,これらの表現を用いることで,様々な画像データセットにまたがる不均衡な画像クラスタリングの結果を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2021-09-11T09:26:52Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
大規模で複雑な画像のクラスタ割り当ては、パターン認識とコンピュータビジョンにおいて重要かつ困難な作業です。
反復最適化による新しい進化的教師なし学習表現モデルを提案する。
ファジィメンバシップを利用して深層クラスタ割り当ての明確な構造を表現するディープリコンストラクションモデルに対して,共同でファジィクラスタリングを行った。
論文 参考訳(メタデータ) (2021-03-31T13:58:10Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。