論文の概要: Snapshot Spectral Clustering -- a costless approach to deep clustering
ensembles generation
- arxiv url: http://arxiv.org/abs/2307.08591v1
- Date: Mon, 17 Jul 2023 16:01:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 12:26:26.034814
- Title: Snapshot Spectral Clustering -- a costless approach to deep clustering
ensembles generation
- Title(参考訳): Snapshot Spectral Clustering - ディープクラスタリングアンサンブル生成のためのコストレスアプローチ
- Authors: Adam Pir\'og, Halina Kwa\'snicka
- Abstract要約: 本稿では,新しいディープ・クラスタリング・アンサンブル法であるSnapshot Spectral Clusteringを提案する。
アンサンブルを作成する際の計算コストを最小化しながら、複数のデータビューを組み合わせることで得られる利益を最大化するように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite tremendous advancements in Artificial Intelligence, learning from
large sets of data in an unsupervised manner remains a significant challenge.
Classical clustering algorithms often fail to discover complex dependencies in
large datasets, especially considering sparse, high-dimensional spaces.
However, deep learning techniques proved to be successful when dealing with
large quantities of data, efficiently reducing their dimensionality without
losing track of underlying information. Several interesting advancements have
already been made to combine deep learning and clustering. Still, the idea of
enhancing the clustering results by combining multiple views of the data
generated by deep neural networks appears to be insufficiently explored yet.
This paper aims to investigate this direction and bridge the gap between deep
neural networks, clustering techniques and ensemble learning methods. To
achieve this goal, we propose a novel deep clustering ensemble method -
Snapshot Spectral Clustering, designed to maximize the gain from combining
multiple data views while minimizing the computational costs of creating the
ensemble. Comparative analysis and experiments described in this paper prove
the proposed concept, while the conducted hyperparameter study provides a
valuable intuition to follow when selecting proper values.
- Abstract(参考訳): 人工知能の進歩にもかかわらず、教師なしの方法で大量のデータから学ぶことは大きな課題である。
古典的なクラスタリングアルゴリズムは、大きなデータセット、特にスパースで高次元の空間における複雑な依存関係を見つけることができない。
しかし、大量のデータを扱う場合、深層学習技術は成功し、基礎となる情報の追跡を失うことなく、その次元を効率的に減らした。
ディープラーニングとクラスタリングを組み合わせるために、すでにいくつかの興味深い進歩がなされている。
それでも、ディープニューラルネットワークによって生成されたデータの複数のビューを組み合わせることでクラスタリング結果を強化するというアイデアはまだ十分に検討されていないようだ。
本稿では,この方向を解明し,深層ニューラルネットワーク,クラスタリング技術,アンサンブル学習手法のギャップを埋めることを目的とする。
この目的を達成するために,複数のデータビューの組み合わせによる利得を最大化し,アンサンブル作成の計算コストを最小化する,新しい深層クラスタリング手法であるsnapshot spectral clusteringを提案する。
本論文で記述された比較分析と実験は,提案する概念を実証する一方で,実施したハイパーパラメータ研究は,適切な値を選択する際に従う価値のある直観を与える。
関連論文リスト
- GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
我々は,認知的深層不完全多視点クラスタリングネットワーク(CDIMC-net)という,新しい不完全多視点クラスタリングネットワークを提案する。
ビュー固有のディープエンコーダとグラフ埋め込み戦略をフレームワークに組み込むことで、各ビューの高レベルな特徴とローカル構造をキャプチャする。
人間の認知、すなわち、簡単からハードに学ぶことに基づいて、モデルトレーニングのための最も自信あるサンプルを選択するための自己評価戦略を導入する。
論文 参考訳(メタデータ) (2024-03-28T15:45:03Z) - Deep Clustering Using the Soft Silhouette Score: Towards Compact and
Well-Separated Clusters [0.0]
我々はシルエット係数の確率的定式化であるソフトシルエットを提案する。
本稿では,ソフトシルエット目的関数の最適化に適した,オートエンコーダに基づくディープラーニングアーキテクチャを提案する。
提案したディープクラスタリング手法は、様々なベンチマークデータセット上でよく研究されたディープクラスタリング手法と比較された。
論文 参考訳(メタデータ) (2024-02-01T14:02:06Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
論文 参考訳(メタデータ) (2022-10-09T02:31:32Z) - A Deep Dive into Deep Cluster [0.2578242050187029]
DeepClusterは、ビジュアル表現のシンプルでスケーラブルな教師なし事前トレーニングである。
本稿では,DeepClusterの収束と性能が,畳み込み層のランダムフィルタの品質と選択されたクラスタ数の相互作用に依存することを示す。
論文 参考訳(メタデータ) (2022-07-24T22:55:09Z) - A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and
Future Directions [48.97008907275482]
クラスタリングは、文献で広く研究されている基本的な機械学習タスクである。
ディープクラスタリング(Deep Clustering)、すなわち表現学習とクラスタリングを共同で最適化する手法が提案され、コミュニティで注目を集めている。
深層クラスタリングの本質的なコンポーネントを要約し、深層クラスタリングと深層クラスタリングの相互作用を設計する方法によって既存の手法を分類する。
論文 参考訳(メタデータ) (2022-06-15T15:05:13Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Large-Scale Hyperspectral Image Clustering Using Contrastive Learning [18.473767002905433]
SSCC(Spectral-Spatial Contrastive Clustering)という,スケーラブルなオンラインクラスタリングモデルを提案する。
我々は、スペクトル空間拡張プールから二重コントラスト学習を行うために、クラスタ番号の次元を持つ投影ヘッドからなる対称双対ニューラルネットワークを利用する。
結果として得られたアプローチは、バッチワイズ最適化によってエンドツーエンドでトレーニングされ、大規模なデータで堅牢になり、見当たらないデータに対して優れた一般化能力が得られる。
論文 参考訳(メタデータ) (2021-11-15T17:50:06Z) - Decorrelating Adversarial Nets for Clustering Mobile Network Data [0.7034976835586089]
ディープラーニングのサブセットであるディープクラスタリングは、多くのネットワーク自動化ユースケースにとって価値のあるツールになり得る。
ほとんどの最先端のクラスタリングアルゴリズムはイメージデータセットをターゲットとしており、モバイルネットワークデータへの適用が困難です。
本稿では,ネットワーク自動化のユースケースに適用した場合にも,信頼性の高いディープクラスタリング手法であるDANCEを提案する。
論文 参考訳(メタデータ) (2021-03-11T15:26:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。