論文の概要: Domain Adapting Speech Emotion Recognition modals to real-world scenario
with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2207.12248v1
- Date: Thu, 7 Jul 2022 02:53:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-31 14:49:34.643887
- Title: Domain Adapting Speech Emotion Recognition modals to real-world scenario
with Deep Reinforcement Learning
- Title(参考訳): 深層強化学習による実世界シナリオへの音声感情認識モーダルの適用
- Authors: Thejan Rajapakshe, Rajib Rana, Sara Khalifa
- Abstract要約: ドメイン適応により、トレーニングのフェーズ後に、モデルによって学習された知識をドメイン間で転送することができる。
より新しいドメインに事前学習モデルを適用するための深層強化学習に基づく戦略を提案する。
- 参考スコア(独自算出の注目度): 5.40755576668989
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning has been a popular training paradigm as deep
learning has gained popularity in the field of machine learning. Domain
adaptation allows us to transfer knowledge learnt by a model across domains
after a phase of training. The inability to adapt an existing model to a
real-world domain is one of the shortcomings of current domain adaptation
algorithms. We present a deep reinforcement learning-based strategy for
adapting a pre-trained model to a newer domain while interacting with the
environment and collecting continual feedback. This method was used on the
Speech Emotion Recognition task, which included both cross-corpus and
cross-language domain adaption schema. Furthermore, it demonstrates that in a
real-world environment, our approach outperforms the supervised learning
strategy by 42% and 20% in cross-corpus and cross-language schema,
respectively.
- Abstract(参考訳): ディープラーニングは機械学習の分野で人気を集めており、深層強化学習は人気のある訓練パラダイムである。
ドメイン適応により、トレーニングのフェーズ後にドメイン間でモデルによって学習された知識を転送することができる。
既存のモデルを現実世界のドメインに適応できないことは、現在のドメイン適応アルゴリズムの欠点の1つです。
環境と対話し、継続的なフィードバックを収集しながら、事前学習したモデルを新しいドメインに適応するための、深い強化学習に基づく戦略を提案する。
この方法は、クロスコーパスとクロス言語ドメイン適応スキーマの両方を含む音声感情認識タスクで使用された。
さらに,本手法は実環境において,クロスコーパスとクロス言語スキーマにおいて,教師あり学習戦略を42%,20%向上させることを示した。
関連論文リスト
- Stratified Domain Adaptation: A Progressive Self-Training Approach for Scene Text Recognition [1.2878987353423252]
シーンテキスト認識(STR)において、教師なしドメイン適応(UDA)がますます普及している。
本稿では,StrDA(Stratified Domain Adaptation)アプローチを導入し,学習プロセスにおける領域ギャップの段階的エスカレーションについて検討する。
本稿では,データサンプルの分布外および領域判別レベルを推定するために,領域判別器を用いる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-13T16:40:48Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
動的ミスマッチで異なるドメインにまたがるポリシーを一般化することは、強化学習において重要な課題となる。
本稿では、ペア化された値ターゲットの近接に基づいて、ソースドメインからの遷移を選択的に共有するバリューガイドデータフィルタリング(VGDF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-28T04:08:40Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
クラスレベルのセグメンテーション性能に基づいてデータを混合する自己学習フレームワークであるDomain Informed Adaptation (IDA) モデルを提案する。
IDAモデルでは、クラスレベルの性能を期待信頼スコア(ECS)によって追跡し、動的スケジュールを用いて異なる領域のデータに対する混合比を決定する。
提案手法は,GTA-Vの都市景観への適応において1.1 mIoU,SynTHIAの都市への適応において0.9 mIoUのマージンで,最先端のUDA-SS法よりも優れる。
論文 参考訳(メタデータ) (2023-03-05T18:16:34Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Domain Generalization for Activity Recognition via Adaptive Feature
Fusion [9.458837222079612]
本稿では,emphAdaptive Feature Fusion for Activity Recognition (AFFAR)を提案する。
AFFARは、モデルの一般化性能を改善するために、ドメイン不変表現とドメイン固有表現を融合することを学ぶ。
AFARを実際の応用、すなわち子どもの注意欠陥性高活動障害(ADHD)の診断に適用する。
論文 参考訳(メタデータ) (2022-07-21T02:14:09Z) - Heterogeneous Domain Adaptation with Adversarial Neural Representation
Learning: Experiments on E-Commerce and Cybersecurity [7.748670137746999]
Heterogeneous Adversarial Neural Domain Adaptation (HANDA) は異種環境における伝達性を最大化するように設計されている。
画像とテキストの電子商取引ベンチマークを用いて,最先端HDA手法に対する性能評価を3つの実験により行った。
論文 参考訳(メタデータ) (2022-05-05T16:57:36Z) - Towards Online Domain Adaptive Object Detection [79.89082006155135]
既存のオブジェクト検出モデルは、トレーニングデータとテストデータの両方が同じソースドメインからサンプリングされていると仮定します。
オンライン設定における対象領域の一般化を適応・改善する新しい統合適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-11T17:47:22Z) - VisDA-2021 Competition Universal Domain Adaptation to Improve
Performance on Out-of-Distribution Data [64.91713686654805]
Visual Domain Adaptation (VisDA) 2021コンペティションは、新しいテストディストリビューションに適応するモデルの能力をテストする。
我々は,新しい視点,背景,モダリティ,品質劣化への適応性を評価する。
厳密なプロトコルを使用してパフォーマンスを計測し、最先端のドメイン適応手法と比較する。
論文 参考訳(メタデータ) (2021-07-23T03:21:51Z) - Unsupervised Domain Adaptation with Multiple Domain Discriminators and
Adaptive Self-Training [22.366638308792734]
Unsupervised Domain Adaptation (UDA)は、ソースドメインでトレーニングされたモデルの一般化能力を改善し、ラベル付きデータが使用できないターゲットドメインでうまく機能することを目的としている。
本稿では、合成データに基づいて訓練されたディープニューラルネットワークを、2つの異なるデータ分布間のドメインシフトに対処する実シーンに適用するアプローチを提案する。
論文 参考訳(メタデータ) (2020-04-27T11:48:03Z) - Hybrid Generative-Retrieval Transformers for Dialogue Domain Adaptation [77.62366712130196]
マルチドメイン MetaLWOz データセットに微調整した GPT-2 に基づくハイブリッド生成・検索モデル DSTC8 の高速領域適応タスクにおける入賞条件について述べる。
提案モデルでは,MetaLWOz上の解析論理をフォールバックとして使用し,人間の評価におけるSoTA(第2位システムよりも4%向上)と,未知のMultiWOZデータセットに適応した競合一般化性能を実現する。
論文 参考訳(メタデータ) (2020-03-03T18:07:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。