Zero-threshold correlated-photon laser with a single trapped atom in a
bimodal cavity
- URL: http://arxiv.org/abs/2207.12304v2
- Date: Tue, 15 Nov 2022 10:06:40 GMT
- Title: Zero-threshold correlated-photon laser with a single trapped atom in a
bimodal cavity
- Authors: Anushree Dey and Arpita Pal and Subhasish Dutta Gupta and Bimalendu
Deb
- Abstract summary: We show theoretically the feasibility of correlated entangled photon-pair generation with vanishing threshold in a bimodal cavity setup.
The photon-pair is shown to be entangled only for low levels of the incoherent pumps and owes its origin solely to the coherent drives.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate theoretically the feasibility of correlated entangled
photon-pair generation with vanishing threshold in a bimodal cavity setup that
uses a single V-type three level atom pumped by dual incoherent sources and
driven by two coherent fields. The photon-pair is shown to be entangled only
for low levels of the incoherent pumps and owes its origin solely to the
coherent drives. Our results show that the dual incoherent pumping with no
coherent drive can lead to amplification of the cavity fields with strong
inter-mode antibunching but no entanglement. Though only coherent drives with
no incoherent pumping can produce entangled photon-pairs, the entangled cavity
fields can not be amplified beyond a certain limit using only coherent drives.
However, the use of even small incoherent pumping in the presence of the
coherent drives can amplify the generated entangled photon-pairs significantly.
We analyse our results in terms of an interplay between coherent and incoherent
processes involving cavity-dressed states. Both the inter- and intra-mode HBT
functions exhibit temporal oscillations in the strong-coupling cavity QED
regime. Our theoretical scheme for the generation of nonclassical and entangled
photon pairs may find interesting applications in quantum metrology and quantum
information science.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Harnessing spontaneous emission of correlated photon pairs from ladder-type giant atoms [5.498509152557573]
We show that a ladder-type three-level giant atom spontaneously emits strongly correlated photon pairs with high efficiency.
By encoding local phases into the optimal coupling sequence, directional two-photon correlated transfer can be achieved.
Such correlated photon pairs have great potential applications for quantum information processing.
arXiv Detail & Related papers (2024-06-18T09:03:00Z) - Cooperative two-photon lasing in two Quantum Dots embedded inside
Photonic microcavity [0.0]
We propose cooperative two-photon lasing in two quantum dots coupled to a single mode photonic crystal cavity.
We incorporate exciton-phonon coupling using polaron transformed master equation.
arXiv Detail & Related papers (2024-01-17T17:06:53Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Single-photon nonlinearities and blockade from a strongly driven
photonic molecule [0.0]
We show that a triply resonant integrated photonic device can be achieved in a material platform displaying an intrinsic third-order nonlinearity.
By strongly driving one of the three resonances of the system, a weak coherent probe at one of the others results in a strongly suppressed two-photon probability at the output.
arXiv Detail & Related papers (2022-07-06T11:33:59Z) - Two-Photon Excitation Sets Limit to Entangled Photon Pair Generation
from Quantum Emitters [0.0]
Entangled photon pairs are key to many novel applications in quantum technologies.
Semiconductor quantum dots can be used as sources of on-demand, highly entangled photons.
arXiv Detail & Related papers (2022-05-06T17:46:38Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.