論文の概要: LightX3ECG: A Lightweight and eXplainable Deep Learning System for
3-lead Electrocardiogram Classification
- arxiv url: http://arxiv.org/abs/2207.12381v1
- Date: Mon, 25 Jul 2022 17:49:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-26 13:29:28.182036
- Title: LightX3ECG: A Lightweight and eXplainable Deep Learning System for
3-lead Electrocardiogram Classification
- Title(参考訳): LightX3ECG:3誘導心電図分類のための軽量・eXplainable Deep Learning System
- Authors: Khiem H. Le, Hieu H. Pham, Thao BT. Nguyen, Tu A. Nguyen, Tien N.
Thanh, Cuong D. Do
- Abstract要約: 心電図(Electrocardiogram、ECG)は、様々な心血管異常を識別するための金の規格である。
本研究では,3つの心電図のみを用いて,複数の心血管異常を正確に同定する新しい深層学習システムを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiovascular diseases (CVDs) are a group of heart and blood vessel
disorders that is one of the most serious dangers to human health, and the
number of such patients is still growing. Early and accurate detection plays a
key role in successful treatment and intervention. Electrocardiogram (ECG) is
the gold standard for identifying a variety of cardiovascular abnormalities. In
clinical practices and most of the current research, standard 12-lead ECG is
mainly used. However, using a lower number of leads can make ECG more prevalent
as it can be conveniently recorded by portable or wearable devices. In this
research, we develop a novel deep learning system to accurately identify
multiple cardiovascular abnormalities by using only three ECG leads.
- Abstract(参考訳): 心臓血管疾患(英: Cardiovascular disease, CVD)は、心臓や血管疾患の集団であり、人間の健康にとって最も深刻な危険の1つである。
早期かつ正確な検出は、治療と介入の成功に重要な役割を果たす。
心電図(Electrocardiogram、ECG)は、様々な心血管異常を識別するための金の規格である。
臨床や現在の研究のほとんどにおいて、標準12誘導性心電図が主に用いられる。
しかし、少ない数のリードを使用することで、ポータブルデバイスやウェアラブルデバイスで便利に記録できるため、ECGはより一般的なものになる。
本研究では,3つの心電図のみを用いて,複数の心血管異常を正確に同定する新しい深層学習システムを開発した。
関連論文リスト
- Large-scale cross-modality pretrained model enhances cardiovascular state estimation and cardiomyopathy detection from electrocardiograms: An AI system development and multi-center validation study [29.842103054029433]
本研究はCMRの診断強度を活用して心電図解析を強化する革新的なモデルであるCardiacNetsを紹介する。
心臓神経は、冠動脈疾患、心筋症、心膜炎、心不全、肺高血圧など、潜在的なCVDの心臓機能指標とスクリーニングを評価する。
その結果、CardiacNetsは従来のECGのみのモデルより一貫して優れており、スクリーニング精度が大幅に向上していることがわかった。
論文 参考訳(メタデータ) (2024-11-19T09:09:14Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - Cardiac Copilot: Automatic Probe Guidance for Echocardiography with World Model [66.35766658717205]
心臓の複雑な構造と重要な手術上の課題のため、経験豊富なソノグラフィーが不足している。
本稿では,リアルタイムなプローブ移動誘導が可能なCardiac Copilotシステムを提案する。
中心となるイノベーションは、心臓の空間構造を表現するためのデータ駆動の世界モデル、Cardiac Dreamerの提案である。
実世界の超音波データとそれに対応するプローブの動きを,3人のソノグラフィーによる151Kサンプル対を用いた110の定期的な臨床スキャンからトレーニングする。
論文 参考訳(メタデータ) (2024-06-19T02:42:29Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - ECGformer: Leveraging transformer for ECG heartbeat arrhythmia
classification [0.0]
不整脈または不整脈とも呼ばれる不整脈は不整脈を指す。
深層学習は、様々な医学的課題に取り組む際、例外的な能力を示した。
我々は心電図データに現れる様々な不整脈の分類のためのECGformerモデルを開発した。
論文 参考訳(メタデータ) (2024-01-06T06:14:48Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
本稿では,8種類の心不整脈と正常リズムの高精度検出のための光深度学習手法を提案する。
各種心電図信号を用いた不整脈分類モデルの試作と試験を行った。
論文 参考訳(メタデータ) (2022-08-29T05:01:04Z) - Enhancing Deep Learning-based 3-lead ECG Classification with Heartbeat
Counting and Demographic Data Integration [0.0]
本稿では,3段階のECG分類において,現在のディープラーニングシステムの性能向上のための2つの新しい手法を紹介する。
具体的には、心拍数回帰という形でのマルチタスク学習方式と、患者人口統計データをシステムに組み込む効果的なメカニズムを提案する。
これら2つの進歩により、2つの大規模ECGデータセットにおいて、F1スコアの0.9796と0.8140の分類性能を得た。
論文 参考訳(メタデータ) (2022-08-15T09:33:36Z) - Identifying Electrocardiogram Abnormalities Using a
Handcrafted-Rule-Enhanced Neural Network [18.859487271034336]
我々は、深層学習に基づく心電図解析に臨床知識を提供するために、畳み込みニューラルネットワークにいくつかのルールを導入する。
我々の新しいアプローチは、既存の最先端の手法をかなり上回っている。
論文 参考訳(メタデータ) (2022-06-16T04:42:57Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
本稿では,ホルター記録を雑音に頑健に解析する3段階プロセスを提案する。
第1段階は、心拍位置を検出する勾配デコーダアーキテクチャを備えたセグメンテーションニューラルネットワーク(NN)である。
第2段階は、心拍を幅または幅に分類する分類NNである。
第3のステージは、NN機能の上に、患者対応機能を組み込んだ強化決定木(GBDT)である。
論文 参考訳(メタデータ) (2020-11-17T16:15:49Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。