論文の概要: Cardiac Copilot: Automatic Probe Guidance for Echocardiography with World Model
- arxiv url: http://arxiv.org/abs/2406.13165v2
- Date: Mon, 21 Oct 2024 06:25:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:14:11.468020
- Title: Cardiac Copilot: Automatic Probe Guidance for Echocardiography with World Model
- Title(参考訳): 心臓コパイロット : 世界モデルを用いた心エコー検査のための自動プローブガイド
- Authors: Haojun Jiang, Zhenguo Sun, Ning Jia, Meng Li, Yu Sun, Shaqi Luo, Shiji Song, Gao Huang,
- Abstract要約: 心臓の複雑な構造と重要な手術上の課題のため、経験豊富なソノグラフィーが不足している。
本稿では,リアルタイムなプローブ移動誘導が可能なCardiac Copilotシステムを提案する。
中心となるイノベーションは、心臓の空間構造を表現するためのデータ駆動の世界モデル、Cardiac Dreamerの提案である。
実世界の超音波データとそれに対応するプローブの動きを,3人のソノグラフィーによる151Kサンプル対を用いた110の定期的な臨床スキャンからトレーニングする。
- 参考スコア(独自算出の注目度): 66.35766658717205
- License:
- Abstract: Echocardiography is the only technique capable of real-time imaging of the heart and is vital for diagnosing the majority of cardiac diseases. However, there is a severe shortage of experienced cardiac sonographers, due to the heart's complex structure and significant operational challenges. To mitigate this situation, we present a Cardiac Copilot system capable of providing real-time probe movement guidance to assist less experienced sonographers in conducting freehand echocardiography. This system can enable non-experts, especially in primary departments and medically underserved areas, to perform cardiac ultrasound examinations, potentially improving global healthcare delivery. The core innovation lies in proposing a data-driven world model, named Cardiac Dreamer, for representing cardiac spatial structures. This world model can provide structure features of any cardiac planes around the current probe position in the latent space, serving as an precise navigation map for autonomous plane localization. We train our model with real-world ultrasound data and corresponding probe motion from 110 routine clinical scans with 151K sample pairs by three certified sonographers. Evaluations on three standard planes with 37K sample pairs demonstrate that the world model can reduce navigation errors by up to 33\% and exhibit more stable performance.
- Abstract(参考訳): 心エコー法は、心臓をリアルタイムに画像化できる唯一の技術であり、心臓疾患の大部分を診断するのに不可欠である。
しかし、心臓の複雑な構造と重要な手術上の課題のため、経験豊富なソノグラフィーが不足している。
この状況を緩和するため,フリーハンド心エコー図作成において,経験の浅いソノグラフィーを支援するために,リアルタイムなプローブ移動誘導を行うことができるCardiac Copilotシステムを提案する。
このシステムは、特に初等部や医療従事地において、非専門家が心臓超音波検査を行えるようにし、世界的な医療提供を改善する可能性がある。
中心となるイノベーションは、心臓の空間構造を表現するためのデータ駆動の世界モデル、Cardiac Dreamerの提案である。
この世界モデルは、潜在空間における現在のプローブ位置の周囲の心臓面の構造的特徴を提供し、自律的な平面位置決めのための正確なナビゲーションマップとして機能する。
実世界の超音波データとそれに対応するプローブの動きを,3人のソノグラフィーによる151Kサンプル対を用いた110の定期的な臨床スキャンからトレーニングする。
37Kのサンプルペアを持つ3つの標準平面の評価は、世界モデルが航法誤差を最大33\%低減し、より安定した性能を示すことを示す。
関連論文リスト
- Sequence-aware Pre-training for Echocardiography Probe Guidance [66.35766658717205]
心臓超音波は、(1)心臓の本質的に複雑な構造、(2)重要な個人差の2つの大きな課題に直面している。
これまでの研究は、心臓のパーソナライズされた構造的特徴よりも、心臓の2Dおよび3Dの人口平均構造についてしか学ばなかった。
パーソナライズされた2次元と3次元の心構造特徴を学習するためのシーケンス認識型自己教師付き事前学習法を提案する。
論文 参考訳(メタデータ) (2024-08-27T12:55:54Z) - Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train [66.35766658717205]
心エコー法を成功させるには、二次元平面上の構造と三次元空間における平面間の空間的関係を徹底的に理解する必要がある。
心構造を意識した世界モデルを取得するための,大規模自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-28T08:54:44Z) - Whole Heart 3D+T Representation Learning Through Sparse 2D Cardiac MR Images [13.686473040836113]
本研究では,心臓スタック全体にわたる空間的パッチと時間的パッチの相関関係を自動的に解明する,完全自己教師型学習フレームワークを提案する。
我々は、UK BioBankから14,000のラベルなしCMRデータをトレーニングし、1000の注釈付きデータで評価する。
論文 参考訳(メタデータ) (2024-06-01T07:08:45Z) - Echocardiogram Foundation Model -- Application 1: Estimating Ejection
Fraction [2.4164193358532438]
心エコー基礎モデルであるエコーAIを導入し,150万個の心エコーを用いて自己教師付き学習(SSL)を用いて訓練した。
我々は,EchoAIを微調整し,平均絶対パーセンテージ誤差を9.40%と評価した。
論文 参考訳(メタデータ) (2023-11-21T13:00:03Z) - Towards Autonomous Atlas-based Ultrasound Acquisitions in Presence of
Articulated Motion [48.52403516006036]
本稿では、自律型ロボットUS手足のスキャンを可能にする視覚ベースのアプローチを提案する。
この目的のために、アノテートされた血管構造を有するヒト腕のアトラスMRIテンプレートを使用して、軌跡を生成する。
いずれの場合も、このシステムはボランティアの手足で計画された血管構造を取得することができる。
論文 参考訳(メタデータ) (2022-08-10T15:39:20Z) - The CirCor DigiScope Dataset: From Murmur Detection to Murmur
Classification [5.879085008496386]
1568人の患者の4つの主要な聴診所から計5282の録音が収集された。
それぞれの心室は、そのタイミング、形状、ピッチ、格付け、品質に応じて、専門家アノテータによって手動で注釈付けされている。
論文 参考訳(メタデータ) (2021-08-02T12:30:40Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
本稿では,ホルター記録を雑音に頑健に解析する3段階プロセスを提案する。
第1段階は、心拍位置を検出する勾配デコーダアーキテクチャを備えたセグメンテーションニューラルネットワーク(NN)である。
第2段階は、心拍を幅または幅に分類する分類NNである。
第3のステージは、NN機能の上に、患者対応機能を組み込んだ強化決定木(GBDT)である。
論文 参考訳(メタデータ) (2020-11-17T16:15:49Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。