論文の概要: How should I compute my candidates? A taxonomy and classification of diagnosis computation algorithms
- arxiv url: http://arxiv.org/abs/2207.12583v2
- Date: Thu, 16 May 2024 12:41:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 20:01:05.362078
- Title: How should I compute my candidates? A taxonomy and classification of diagnosis computation algorithms
- Title(参考訳): 候補者をどう計算するか?診断計算アルゴリズムの分類と分類
- Authors: Patrick Rodler,
- Abstract要約: 本研究は,標準化された評価,分類,比較を可能にする診断計算のための分類法を提案する。
i)研究者や実践者が利用可能な診断技術の多様な風景を印象づけること、(ii)アプローチの長所と短所だけでなく、主要な特徴を検索できるようにすること、(iii)その特徴に基づいたテクニックの容易かつ明確な比較を可能にすること、(iv)特定の問題に適用するための「正しい」アルゴリズムの選択を促進することである。
- 参考スコア(独自算出の注目度): 4.8951183832371
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work proposes a taxonomy for diagnosis computation methods which allows their standardized assessment, classification and comparison. The aim is to (i) give researchers and practitioners an impression of the diverse landscape of available diagnostic techniques, (ii) allow them to easily retrieve the main features as well as pros and cons of the approaches, (iii) enable an easy and clear comparison of the techniques based on their characteristics wrt. a list of important and well-defined properties, and (iv) facilitate the selection of the "right" algorithm to adopt for a particular problem case, e.g., in practical diagnostic settings, for comparison in experimental evaluations, or for reuse, modification, extension, or improvement in the course of research.
- Abstract(参考訳): 本研究は,標準化された評価,分類,比較を可能にする診断計算のための分類法を提案する。
目的は
二 研究者及び実践者が利用可能な診断技術の多様な景観を印象付けること。
(二)アプローチの長所と短所だけでなく、主要な特徴を容易に取り出すことができる。
(三)その特徴に基づいて、容易かつ明確な技術比較を可能にする。
重要で明確に定義されたプロパティのリスト、そして
(4)「正しい」アルゴリズムの選択は、例えば、実際的な診断設定において、実験的な評価において比較したり、研究の過程での再利用、修正、拡張、改善のために、特定の問題に適応するように促進する。
関連論文リスト
- Comparative Study of Machine Learning Algorithms in Detecting Cardiovascular Diseases [0.0]
機械学習技術を用いた心血管疾患(CVD)の検出は、医学的診断において大きな進歩を示している。
本研究では,ロジスティック回帰,決定木,ランダムフォレスト,グラディエントブースティング,サポートベクトルマシン(SVM),K-Nearest Neighbors(KNN),XGBoostなど,さまざまな機械学習アルゴリズムの比較分析を行った。
本研究は,アンサンブル法と高度なアルゴリズムを用いて信頼性の高い予測を行い,CVD検出のための包括的枠組みを提供する。
論文 参考訳(メタデータ) (2024-05-27T11:29:54Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Early Time-Series Classification Algorithms: An Empirical Comparison [59.82930053437851]
早期時系列分類(Early Time-Series Classification, ETSC)は、できるだけ少ない測定で時系列のクラスを予測するタスクである。
既存のETSCアルゴリズムを公開データと,新たに導入された2つのデータセットで評価した。
論文 参考訳(メタデータ) (2022-03-03T10:43:56Z) - Semantic Search for Large Scale Clinical Ontologies [63.71950996116403]
本稿では,大規模臨床語彙検索システムを構築するための深層学習手法を提案する。
本稿では,意味学習データに基づくトレーニングデータを生成するTriplet-BERTモデルを提案する。
このモデルは,5つの実ベンチマークデータセットを用いて評価され,提案手法は自由テキストから概念,概念まで,概念語彙の検索において高い結果が得られることを示す。
論文 参考訳(メタデータ) (2022-01-01T05:15:42Z) - Validating GAN-BioBERT: A Methodology For Assessing Reporting Trends In
Clinical Trials [3.164363223464948]
本研究では,半教師付き自然言語プロセスモデルを用いた臨床試験要約のための感情分類アルゴリズムを開発した。
このアルゴリズムの精度は91.3%であり、マクロF1スコアは0.92であり、従来の手法に比べて精度が大幅に向上した。
論文 参考訳(メタデータ) (2021-06-01T17:51:54Z) - AI Driven Knowledge Extraction from Clinical Practice Guidelines:
Turning Research into Practice [2.803896166632835]
臨床実践ガイドライン(CPGs)は、医療領域における最先端の研究成果を医療従事者と共有するための最前線の方法論です。
しかし、多くのCPGから関連する知識を抽出することは、すでに負担のかかる医療専門家には実現できません。
本研究は, CPGから知識を抽出し, ギャップを減らし, 最新の研究成果を臨床実践に転換する手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T07:23:02Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - On-the-Fly Joint Feature Selection and Classification [16.84451472788859]
本稿では,共同で特徴選択と分類を行うためのフレームワークを提案する。
我々は、関連する最適化問題の最適解を導出し、その構造を解析する。
提案アルゴリズムの性能を複数の公開データセット上で評価する。
論文 参考訳(メタデータ) (2020-04-21T19:19:39Z) - Probabilistic Diagnostic Tests for Degradation Problems in Supervised
Learning [0.0]
分類アルゴリズムにおけるクラス不均衡、重なり合い、小さな分散、ノイズラベル、スパース限界精度などの問題。
各問題の兆候と症状の同定に基づく確率診断モデルを示す。
いくつかの教師付きアルゴリズムの動作と性能は、トレーニングセットにそのような問題がある場合に研究される。
論文 参考訳(メタデータ) (2020-04-06T20:32:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。