Quantification of Quantum Correlations in Two-Beam Gaussian States Using
Photon-Number Measurements
- URL: http://arxiv.org/abs/2209.05422v2
- Date: Mon, 16 Jan 2023 11:10:13 GMT
- Title: Quantification of Quantum Correlations in Two-Beam Gaussian States Using
Photon-Number Measurements
- Authors: Artur Barasinski and Jan Perina Jr and Antonin Cernoch
- Abstract summary: We implement a general method to quantify various forms of quantum correlations using solely the experimental intensity moments up to the fourth order.
This is possible as these moments allow for an exact determination of the global and marginal impurities of two-beam Gaussian fields.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identification, and subsequent quantification of quantum correlations, is
critical for understanding, controlling, and engineering quantum devices and
processes. We derive and implement a general method to quantify various forms
of quantum correlations using solely the experimental intensity moments up to
the fourth order. This is possible as these moments allow for an exact
determination of the global and marginal impurities of two-beam Gaussian
fields. This leads to the determination of steering, tight lower and upper
bounds for the negativity, and the Kullback-Leibler divergence used as a
quantifier of state nonseparability. The principal squeezing variances are
determined as well using the intensity moments. The approach is demonstrated on
the experimental twin beams with increasing intensity and the squeezed
super-Gaussian beams composed of photon pairs. Our method is readily applicable
to multibeam Gaussian fields to characterize their quantum correlations.
Related papers
- Strong Converse Exponent of Quantum Dichotomies [5.371337604556312]
We study the large-deviation behavior of quantum dichotomies and determine the exact strong converse exponent based on the purified distance.
Our result is characterized by a simple optimization of quantum R'enyi information measures involving all four mutually non-commuting quantum states.
arXiv Detail & Related papers (2024-10-16T13:54:18Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Creating mirror-mirror quantum correlations in optomechanics [0.0]
We study the transfer of quantum correlations between two movable mirrors of two Fabry-P'erot cavities separated via broadband squeezed light and coupled via photon hopping process.
arXiv Detail & Related papers (2023-08-11T02:38:26Z) - Quantifying quantum correlations in noisy Gaussian channels [0.0]
We describe a scheme that aims to specify and examine the dynamic evolution of the quantum correlations in two-modes Gaussian states.
We show that the Gaussian interferometric power is a measurement quantifier that can capture the essential quantum correlations beyond quantum entanglement.
arXiv Detail & Related papers (2022-07-26T11:34:35Z) - Detection of arbitrary quantum correlations via synthesized quantum
channels [16.1155239067513]
We demonstrate the extraction of arbitrary types of quantum correlations using a quantum-sensing approach based on sequential weak measurement.
We successfully extract the second- and fourth-order correlations of a nuclear-spin target by another nuclear-spin sensor.
The full characterization of quantum correlations provides a new tool for understanding quantum many-body systems.
arXiv Detail & Related papers (2022-06-13T02:27:17Z) - Exploring quantum correlations in a hybrid optomechanical system [0.0]
We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement.
Photon hopping is employed to establish couplings between optical modes, while phonon is utilized to establish couplings between mechanical tunneling resonators.
arXiv Detail & Related papers (2022-04-16T08:47:50Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Quantum Correlations beyond Entanglement and Discord [0.0]
We experimentally realize a form of quantum correlation that exists even in the absence of entanglement and discord.
We implement a robust kind of nonclassical photon-photon correlated state with useful applications in quantum information processing.
arXiv Detail & Related papers (2020-10-07T15:52:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.