Coronavirus disease situation analysis and prediction using machine
learning: a study on Bangladeshi population
- URL: http://arxiv.org/abs/2207.13056v1
- Date: Tue, 12 Jul 2022 09:48:41 GMT
- Title: Coronavirus disease situation analysis and prediction using machine
learning: a study on Bangladeshi population
- Authors: Al-Akhir Nayan, Boonserm Kijsirikul, Yuji Iwahori
- Abstract summary: In recent months, the number of death and infected rates has increased more distinguished than before in Bangladesh.
This study distinguishes machine learning models and creates a prediction system to anticipate the infected and death rate for the coming days.
- Score: 1.7188280334580195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: During a pandemic, early prognostication of patient infected rates can reduce
the death by ensuring treatment facility and proper resource allocation. In
recent months, the number of death and infected rates has increased more
distinguished than before in Bangladesh. The country is struggling to provide
moderate medical treatment to many patients. This study distinguishes machine
learning models and creates a prediction system to anticipate the infected and
death rate for the coming days. Equipping a dataset with data from March 1,
2020, to August 10, 2021, a multi-layer perceptron (MLP) model was trained. The
data was managed from a trusted government website and concocted manually for
training purposes. Several test cases determine the model's accuracy and
prediction capability. The comparison between specific models assumes that the
MLP model has more reliable prediction capability than the support vector
regression (SVR) and linear regression model. The model presents a report about
the risky situation and impending coronavirus disease (COVID-19) attack.
According to the prediction produced by the model, Bangladesh may suffer
another COVID-19 attack, where the number of infected cases can be between 929
to 2443 and death cases between 19 to 57.
Related papers
- Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Can Self Reported Symptoms Predict Daily COVID-19 Cases? [12.029443053416399]
We develop machine learning models to estimate the prevalence of COVID-19 using self-reported symptoms.
Our results indicate a lower error on the local models as opposed to the global model.
This work demonstrates that the models developed on crowd-sourced data, curated via online platforms, can complement the existing epidemiological surveillance infrastructure.
arXiv Detail & Related papers (2021-05-18T07:26:09Z) - Comparative Analysis of Machine Learning Approaches to Analyze and
Predict the Covid-19 Outbreak [10.307715136465056]
We present a comparative analysis of various machine learning (ML) approaches in predicting the COVID-19 outbreak in the epidemiological domain.
The results reveal the advantages of ML algorithms for supporting decision making of evolving short term policies.
arXiv Detail & Related papers (2021-02-11T11:57:33Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Tracking disease outbreaks from sparse data with Bayesian inference [55.82986443159948]
The COVID-19 pandemic provides new motivation for estimating the empirical rate of transmission during an outbreak.
Standard methods struggle to accommodate the partial observability and sparse data common at finer scales.
We propose a Bayesian framework which accommodates partial observability in a principled manner.
arXiv Detail & Related papers (2020-09-12T20:37:33Z) - Deep Learning Models for Early Detection and Prediction of the spread of
Novel Coronavirus (COVID-19) [4.213555705835109]
SARS-CoV2 is continuing to spread globally and has become a pandemic.
There is an urgent need to develop machine learning techniques to predict the spread of COVID-19.
arXiv Detail & Related papers (2020-07-29T10:14:11Z) - A self-supervised neural-analytic method to predict the evolution of
COVID-19 in Romania [10.760851506126105]
We use a recently published improved version of SEIR, which is the classic, established model for infectious diseases.
We propose a self-supervised approach to train a deep convolutional network to guess the correct set of ModifiedSEIR model parameters.
We find an optimistic result in the case fatality rate for Romania which may be around 0.3% and we also demonstrate that our model is able to correctly predict the number of daily fatalities for up to three weeks in the future.
arXiv Detail & Related papers (2020-06-23T12:00:04Z) - PECAIQR: A Model for Infectious Disease Applied to the Covid-19 Epidemic [0.0]
Current state of the art predictions of future daily deaths have confidence intervals that are unacceptably wide.
We used US county-level data on daily deaths and population statistics to forecast future deaths.
We generate longer-time horizon predictions over various 1-month windows in the past, forecast how many medical resources will be needed in counties, and evaluate the efficacy of our model in other countries.
arXiv Detail & Related papers (2020-06-17T17:59:55Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.