Can Self Reported Symptoms Predict Daily COVID-19 Cases?
- URL: http://arxiv.org/abs/2105.08321v1
- Date: Tue, 18 May 2021 07:26:09 GMT
- Title: Can Self Reported Symptoms Predict Daily COVID-19 Cases?
- Authors: Parth Patwa and Viswanatha Reddy and Rohan Sukumaran and Sethuraman TV
and Eptehal Nashnoush and Sheshank Shankar and Rishemjit Kaur and Abhishek
Singh and Ramesh Raskar
- Abstract summary: We develop machine learning models to estimate the prevalence of COVID-19 using self-reported symptoms.
Our results indicate a lower error on the local models as opposed to the global model.
This work demonstrates that the models developed on crowd-sourced data, curated via online platforms, can complement the existing epidemiological surveillance infrastructure.
- Score: 12.029443053416399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The COVID-19 pandemic has impacted lives and economies across the globe,
leading to many deaths. While vaccination is an important intervention, its
roll-out is slow and unequal across the globe. Therefore, extensive testing
still remains one of the key methods to monitor and contain the virus. Testing
on a large scale is expensive and arduous. Hence, we need alternate methods to
estimate the number of cases. Online surveys have been shown to be an effective
method for data collection amidst the pandemic. In this work, we develop
machine learning models to estimate the prevalence of COVID-19 using
self-reported symptoms. Our best model predicts the daily cases with a mean
absolute error (MAE) of 226.30 (normalized MAE of 27.09%) per state, which
demonstrates the possibility of predicting the actual number of confirmed cases
by utilizing self-reported symptoms. The models are developed at two levels of
data granularity - local models, which are trained at the state level, and a
single global model which is trained on the combined data aggregated across all
states. Our results indicate a lower error on the local models as opposed to
the global model. In addition, we also show that the most important symptoms
(features) vary considerably from state to state. This work demonstrates that
the models developed on crowd-sourced data, curated via online platforms, can
complement the existing epidemiological surveillance infrastructure in a
cost-effective manner.
Related papers
- Coronavirus disease situation analysis and prediction using machine
learning: a study on Bangladeshi population [1.7188280334580195]
In recent months, the number of death and infected rates has increased more distinguished than before in Bangladesh.
This study distinguishes machine learning models and creates a prediction system to anticipate the infected and death rate for the coming days.
arXiv Detail & Related papers (2022-07-12T09:48:41Z) - Forecasting COVID- 19 cases using Statistical Models and Ontology-based
Semantic Modelling: A real time data analytics approach [1.8008011356310047]
We develop a prediction model using statistical time series models such as SARIMA and FBProphet to monitor the daily active, recovered and death cases of COVID-19 accurately.
A COVID-19 Ontology is developed and performs various queries using SPARQL query on designed Ontology.
On individual basis COVID case prediction, approx. 497 individual samples have been tested and classified into five different levels of COVID classes.
arXiv Detail & Related papers (2022-06-06T11:58:11Z) - Image Data collection and implementation of deep learning-based model in
detecting Monkeypox disease using modified VGG16 [0.0]
We introduce a newly developed "Monkeypox2022" dataset that is publicly available to use and can be obtained from our shared GitHub repository.
We propose and evaluate a modified VGG16 model, which includes two distinct studies: Study One and Two.
Our exploratory computational results indicate that our suggested model can identify Monkeypox patients with an accuracy of $97pm1.8%$.
arXiv Detail & Related papers (2022-06-04T00:34:15Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Comparative Analysis of Machine Learning Approaches to Analyze and
Predict the Covid-19 Outbreak [10.307715136465056]
We present a comparative analysis of various machine learning (ML) approaches in predicting the COVID-19 outbreak in the epidemiological domain.
The results reveal the advantages of ML algorithms for supporting decision making of evolving short term policies.
arXiv Detail & Related papers (2021-02-11T11:57:33Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
Policy Assessment using Compartmental Gaussian Processes [111.69190108272133]
coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures.
Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential.
This paper develops a Bayesian model for predicting the effects of COVID-19 lockdown policies in a global context.
arXiv Detail & Related papers (2020-05-13T18:21:50Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - A kinetic model for qualitative understanding and analysis of the effect
of complete lockdown imposed by India for controlling the COVID-19 disease
spread by the SARS-CoV-2 virus [0.0]
The present ongoing global pandemic caused by SARS-CoV-2 virus is creating havoc across the world.
The Union Government of India made an announcement of unprecedented complete lockdown of the entire country effective from the next day.
This study aims to scientifically analyze the implications of this decision using a kinetic model covering more than 96% of Indian territory.
arXiv Detail & Related papers (2020-04-12T19:34:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.