Bayesian Evidential Learning for Few-Shot Classification
- URL: http://arxiv.org/abs/2207.13137v2
- Date: Wed, 4 Sep 2024 07:41:41 GMT
- Title: Bayesian Evidential Learning for Few-Shot Classification
- Authors: Xiongkun Linghu, Yan Bai, Yihang Lou, Shengsen Wu, Jinze Li, Jianzhong He, Tao Bai,
- Abstract summary: Few-Shot Classification aims to generalize from base classes to novel classes given very limited labeled samples.
State-of-the-art solutions involve learning to find a good metric and representation space to compute the distance between samples.
Despite the promising accuracy performance, how to model uncertainty for metric-based FSC methods effectively is still a challenge.
- Score: 22.46281648187903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-Shot Classification(FSC) aims to generalize from base classes to novel classes given very limited labeled samples, which is an important step on the path toward human-like machine learning. State-of-the-art solutions involve learning to find a good metric and representation space to compute the distance between samples. Despite the promising accuracy performance, how to model uncertainty for metric-based FSC methods effectively is still a challenge. To model uncertainty, We place a distribution over class probability based on the theory of evidence. As a result, uncertainty modeling and metric learning can be decoupled. To reduce the uncertainty of classification, we propose a Bayesian evidence fusion theorem. Given observed samples, the network learns to get posterior distribution parameters given the prior parameters produced by the pre-trained network. Detailed gradient analysis shows that our method provides a smooth optimization target and can capture the uncertainty. The proposed method is agnostic to metric learning strategies and can be implemented as a plug-and-play module. We integrate our method into several newest FSC methods and demonstrate the improved accuracy and uncertainty quantification on standard FSC benchmarks.
Related papers
- Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - Combining Statistical Depth and Fermat Distance for Uncertainty Quantification [3.3975558777609915]
We measure the Out-of-domain uncertainty in the prediction of Neural Networks using a statistical notion called Lens Depth'' (LD) combined with Fermat Distance.
The proposed method gives excellent qualitative result on toy datasets and can give competitive or better uncertainty estimation on standard deep learning datasets.
arXiv Detail & Related papers (2024-04-12T13:54:21Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Scalable Cross Validation Losses for Gaussian Process Models [22.204619587725208]
We use Polya-Gamma auxiliary variables and variational inference to accommodate binary and multi-class classification.
We find that our method offers fast training and excellent predictive performance.
arXiv Detail & Related papers (2021-05-24T21:01:47Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
One-sided prediction (OSP) based relaxation yields an SC scheme that attains near-optimal coverage in the practically relevant high target accuracy regime.
We theoretically derive bounds generalization for SC and OSP, and empirically we show that our scheme strongly outperforms state of the art methods in coverage at small error levels.
arXiv Detail & Related papers (2020-10-15T16:14:27Z) - Joint Stochastic Approximation and Its Application to Learning Discrete
Latent Variable Models [19.07718284287928]
We show that the difficulty of obtaining reliable gradients for the inference model and the drawback of indirectly optimizing the target log-likelihood can be gracefully addressed.
We propose to directly maximize the target log-likelihood and simultaneously minimize the inclusive divergence between the posterior and the inference model.
The resulting learning algorithm is called joint SA (JSA)
arXiv Detail & Related papers (2020-05-28T13:50:08Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.