Correlations Between COVID-19 and Dengue
- URL: http://arxiv.org/abs/2207.13561v1
- Date: Wed, 27 Jul 2022 14:55:28 GMT
- Title: Correlations Between COVID-19 and Dengue
- Authors: Paula Bergero, Laura P. Schaposnik, Grace Wang
- Abstract summary: This paper shows how a neural network approach can incorporate Dengue and COVID-19 data as well as external factors.
We define a Correlation Model through which we show that the number of cases of COVID-19 and Dengue have very similar trends.
We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases.
- Score: 0.8164433158925593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A dramatic increase in the number of outbreaks of Dengue has recently been
reported, and climate change is likely to extend the geographical spread of the
disease. In this context, this paper shows how a neural network approach can
incorporate Dengue and COVID-19 data as well as external factors (such as
social behaviour or climate variables), to develop predictive models that could
improve our knowledge and provide useful tools for health policy makers.
Through the use of neural networks with different social and natural
parameters, in this paper we define a Correlation Model through which we show
that the number of cases of COVID-19 and Dengue have very similar trends. We
then illustrate the relevance of our model by extending it to a Long short-term
memory model (LSTM) that incorporates both diseases, and using this to estimate
Dengue infections via COVID-19 data in countries that lack sufficient Dengue
data.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - An integrated recurrent neural network and regression model with spatial
and climatic couplings for vector-borne disease dynamics [4.254099382808598]
We develop an integrated recurrent neural network and nonlinear regression model for disease-borne disease evolution.
We take into account climate data seasonality and as external factors that correlate with insects (e.g. flies), also spill-over infections from neighboring regions surrounding a region of interest.
The integrated model is trained by neuraltemporal descent and tested on leish-maniasis data in Sri Lanka from 2013-2018 where infection outbreaks occurred.
arXiv Detail & Related papers (2022-01-23T23:04:58Z) - Early Detection of COVID-19 Hotspots Using Spatio-Temporal Data [66.70036251870988]
The Centers for Disease Control and Prevention (CDC) has worked with other federal agencies to identify counties with increasing coronavirus 2019 (CO-19) incidence (hotspots)
This paper presents a sparse model for early detection of COVID-19 hotspots (at the county level) in the United States.
Deep neural networks are introduced to enhance the model's representative power while still enjoying the interpretability of the kernel.
arXiv Detail & Related papers (2021-05-31T19:28:17Z) - COUnty aggRegation mixup AuGmEntation (COURAGE) COVID-19 Prediction [29.919578191688274]
This paper proposes a method named COURAGE to generate a short-term prediction of 2-week-ahead COVID-19 related deaths for each county in the United States.
Our model fully utilizes publicly available information of COVID-19 related confirmed cases, deaths, community mobility trends and demographic information, and can produce state-level prediction as an aggregation of the corresponding county-level predictions.
arXiv Detail & Related papers (2021-05-03T04:00:59Z) - Inter-Series Attention Model for COVID-19 Forecasting [23.58411106491221]
We develop a new neural forecasting model, called Attention Crossing Time Series (textbfACTS), that makes forecasts via comparing patterns across time series obtained from multiple regions.
Among 13 out of 18 testings including forecasting newly confirmed cases, hospitalizations and deaths, textbfACTS outperforms all the leading COVID-19 forecasters highlighted by CDC.
arXiv Detail & Related papers (2020-10-25T00:11:49Z) - Analysing the impact of global demographic characteristics over the
COVID-19 spread using class rule mining and pattern matching [8.025086113117291]
This study presents an intelligent approach to investigate the multi-dimensional associations between demographic attributes and COVID-19 global variations.
We gather multiple demographic attributes and COVID-19 infection data from reliable sources, which are then processed by intelligent algorithms to identify the significant associations and patterns within the data.
arXiv Detail & Related papers (2020-09-27T18:43:18Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19 [3.464871689508835]
We develop an integrated disease model based on epidemic differential equations (SIR) and recurrent neural networks (RNN)
We trained and tested our model on CO-19 data in Italy, and show that it out-performs existing temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting.
arXiv Detail & Related papers (2020-07-14T07:04:57Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.