論文の概要: Will AI Make Cyber Swords or Shields: A few mathematical models of
technological progress
- arxiv url: http://arxiv.org/abs/2207.13825v1
- Date: Wed, 27 Jul 2022 23:27:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-29 12:49:52.595569
- Title: Will AI Make Cyber Swords or Shields: A few mathematical models of
technological progress
- Title(参考訳): AIはサイバーソードやシールドを作る: 技術的進歩の数学的モデル
- Authors: Andrew J Lohn and Krystal Alex Jackson
- Abstract要約: フィッシングに対するAIの影響は過大評価されているかもしれないが、より多くの攻撃が検出されない可能性があることを示している。
脆弱性の発見は、攻撃者にとってディフェンダー以上の助けになる可能性がある。
また、エクスプロイトを書く自動化は、パッチを書く自動化よりも攻撃者にとって有用だ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We aim to demonstrate the value of mathematical models for policy debates
about technological progress in cybersecurity by considering phishing,
vulnerability discovery, and the dynamics between patching and exploitation. We
then adjust the inputs to those mathematical models to match some possible
advances in their underlying technology. We find that AI's impact on phishing
may be overestimated but could lead to more attacks going undetected. Advances
in vulnerability discovery have the potential to help attackers more than
defenders. And automation that writes exploits is more useful to attackers than
automation that writes patches, although advances that help deploy patches
faster have the potential to be more impactful than either.
- Abstract(参考訳): 我々は,フィッシング,脆弱性発見,パッチとエクスプロイトのダイナミクスを考慮し,サイバーセキュリティの技術的進歩に関する政策討論の数学的モデルの価値を実証することを目的とする。
次に、それらの数学的モデルに入力を調整し、基礎となる技術のいくつかの進歩に対応する。
aiのフィッシングへの影響は過大評価されるかもしれないが、より多くの攻撃が検出されない可能性がある。
脆弱性発見の進歩は、攻撃者をディフェンダー以上に支援する可能性を秘めている。
エクスプロイトを書く自動化は、パッチを書く自動化よりも攻撃者にとって役に立つが、パッチを素早くデプロイするための進歩は、どちらよりも影響が大きい可能性がある。
関連論文リスト
- Taking off the Rose-Tinted Glasses: A Critical Look at Adversarial ML Through the Lens of Evasion Attacks [11.830908033835728]
我々は、過度に寛容な攻撃と過度に制限された防衛脅威モデルが、MLドメインにおける防衛開発を妨げていると主張している。
我々は、AIの観点からではなく、システムセキュリティの観点から、敵対的機械学習を分析する。
論文 参考訳(メタデータ) (2024-10-15T21:33:23Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
本稿では,人工知能(AI)の攻撃的サイバーセキュリティへの統合について検討する。
サイバー攻撃をシミュレートし実行するために設計された、自律的なAIエージェントであるReaperAIを開発している。
ReaperAIは、セキュリティ脆弱性を自律的に識別し、悪用し、分析する可能性を実証する。
論文 参考訳(メタデータ) (2024-05-09T18:15:12Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
最近の研究で、人工知能のセキュリティの研究と実践のギャップが特定されている。
我々は、AIセキュリティ研究で最も研究されている6つの攻撃の脅威モデルを再検討し、実際にAIの使用と一致させる。
論文 参考訳(メタデータ) (2023-11-16T16:09:44Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Machine Learning Featurizations for AI Hacking of Political Systems [0.0]
最近のエッセイ"The Coming AI Hackers"の中で、Schneier氏は、社会、経済、政治システムの脆弱性を発見し、操作し、悪用するための人工知能の将来の応用を提案した。
この研究は、AIハッキングの可能な"機能化"フレームワークを仮定して、機械学習から理論を適用することによって、概念を前進させる。
政治システムの属性や結果を予測するために,さまざまなディープラーニングモデルの応用を可能にするグラフとシーケンスデータ表現を開発した。
論文 参考訳(メタデータ) (2021-10-08T16:51:31Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
この調査は、組織に対する攻撃的なAIの脅威を調査する。
まず、AIが敵の方法、戦略、目標、および全体的な攻撃モデルをどのように変えるかについて議論する。
そして、文献レビューを通じて、敵が攻撃を強化するために使用できる33の攻撃的AI能力を特定します。
論文 参考訳(メタデータ) (2021-06-30T01:03:28Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Security and Privacy for Artificial Intelligence: Opportunities and
Challenges [11.368470074697747]
近年、ほとんどのAIモデルは高度なハッキング技術に弱い。
この課題は、敵AIの研究努力を共同で進めるきっかけとなった。
我々は、AIアプリケーションに対する敵攻撃を実証する総合的なサイバーセキュリティレビューを提示する。
論文 参考訳(メタデータ) (2021-02-09T06:06:13Z) - An Empirical Review of Adversarial Defenses [0.913755431537592]
このようなシステムの基礎を形成するディープニューラルネットワークは、敵対攻撃と呼ばれる特定のタイプの攻撃に非常に影響を受けやすい。
ハッカーは、最小限の計算でも、敵対的な例(他のクラスに属するイメージやデータポイント)を生成し、そのようなアルゴリズムの基礎を崩壊させることができます。
本稿では,DropoutとDenoising Autoencodersの2つの効果的な手法を示し,そのような攻撃がモデルを騙すのを防ぐことに成功したことを示す。
論文 参考訳(メタデータ) (2020-12-10T09:34:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。