論文の概要: Federated Learning for IoUT: Concepts, Applications, Challenges and
Opportunities
- arxiv url: http://arxiv.org/abs/2207.13976v1
- Date: Thu, 28 Jul 2022 09:40:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-29 12:46:38.803396
- Title: Federated Learning for IoUT: Concepts, Applications, Challenges and
Opportunities
- Title(参考訳): ioutのための連合学習:概念、応用、挑戦、機会
- Authors: Nancy Victor, Rajeswari. C, Mamoun Alazab, Sweta Bhattacharya, Sindri
Magnusson, Praveen Kumar Reddy Maddikunta, Kadiyala Ramana, Thippa Reddy
Gadekallu
- Abstract要約: Internet of Underwater Things (IoUT)は、環境モニタリングや探索、防衛アプリケーションなど、この10年間で急速に勢いを増している。
従来のIoUTシステムは、信頼性、効率、タイムラインのニーズを満たす機械学習(ML)アプローチを使用している。
本稿では,IoUTにおけるフェデレートラーニング(FL)の様々な応用,課題,オープンな課題,今後の研究展望の方向性について概説する。
- 参考スコア(独自算出の注目度): 9.705327282988916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Internet of Underwater Things (IoUT) have gained rapid momentum over the past
decade with applications spanning from environmental monitoring and
exploration, defence applications, etc. The traditional IoUT systems use
machine learning (ML) approaches which cater the needs of reliability,
efficiency and timeliness. However, an extensive review of the various studies
conducted highlight the significance of data privacy and security in IoUT
frameworks as a predominant factor in achieving desired outcomes in mission
critical applications. Federated learning (FL) is a secured, decentralized
framework which is a recent development in machine learning, that will help in
fulfilling the challenges faced by conventional ML approaches in IoUT. This
paper presents an overview of the various applications of FL in IoUT, its
challenges, open issues and indicates direction of future research prospects.
- Abstract(参考訳): iout(internet of underwater things)は、環境モニタリングや探査、防衛アプリケーションなど幅広いアプリケーションによって、過去10年間で急速に勢いを増している。
従来のIoUTシステムは、信頼性、効率、タイムラインのニーズを満たす機械学習(ML)アプローチを使用している。
しかし、様々な研究の広範なレビューでは、ioutフレームワークにおけるデータプライバシとセキュリティの重要性が、ミッションクリティカルなアプリケーションにおいて望ましい結果を達成するための主要な要因として強調された。
フェデレートラーニング(FL)は、機械学習の最近の発展であるセキュアで分散化されたフレームワークであり、IoUTにおける従来のMLアプローチが直面する課題を達成するのに役立つ。
本稿では,IoUTにおけるFLの様々な応用,課題,オープンな課題,今後の研究展望の方向性について概説する。
関連論文リスト
- Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework [1.4206132527980742]
Federated Learning(FL)は、データプライバシを保持しながら協調的なモデルトレーニングを可能にする分散機械学習パラダイムである。
本稿では,統合学習のためのフレームワークおよびベンチマークスイートであるAPPFLの開発における最近の進歩について述べる。
本稿では, 通信効率, プライバシー保護, 計算性能, 資源利用など, FLの様々な側面を評価する広範な実験を通じて, APPFLの能力を実証する。
論文 参考訳(メタデータ) (2024-09-17T22:20:26Z) - Powering the Future of IoT: Federated Learning for Optimized Power Consumption and Enhanced Privacy [0.0]
フェデレートラーニングは、IoT環境における消費電力とデータプライバシの固有の課題に対処するための、有望なパラダイムとして登場します。
本稿では、電力消費を軽減し、プライバシとセキュリティ対策を強化することにより、IoTデバイスの長寿命化におけるFLの変革の可能性について検討する。
論文 参考訳(メタデータ) (2024-05-05T22:18:22Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - A Survey of Federated Unlearning: A Taxonomy, Challenges and Future
Directions [71.16718184611673]
プライバシ保護のためのフェデレートラーニング(FL)の進化により、忘れられる権利を実装する必要性が高まっている。
選択的な忘れ方の実装は、その分散した性質のため、FLでは特に困難である。
Federated Unlearning(FU)は、データプライバシの必要性の増加に対応する戦略的ソリューションとして登場した。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Federated Learning in IoT: a Survey from a Resource-Constrained
Perspective [0.0]
分散機械学習技術であるフェデレートラーニング(FL)は、さまざまな分散データソースから機械学習モデルを収集、トレーニングするために広く使用されている。
しかし、IoTデバイスのリソース制限の性質は、現実世界における大規模デプロイメントFLを妨げている。
本研究では,資源制約型モノのインターネット(IoT)環境におけるフェデレートラーニング(FL)導入に伴う課題と解決策を包括的に調査する。
論文 参考訳(メタデータ) (2023-08-25T03:31:22Z) - Towards Quantum Federated Learning [80.1976558772771]
量子フェデレートラーニング(Quantum Federated Learning)は、学習プロセスにおけるプライバシ、セキュリティ、効率性の向上を目的とする。
我々は、QFLの原則、技術、および新しい応用について、包括的に理解することを目指している。
QFLの分野が進むにつれ、様々な産業でさらなるブレークスルーや応用が期待できる。
論文 参考訳(メタデータ) (2023-06-16T15:40:21Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Evaluating Federated Learning for Intrusion Detection in Internet of
Things: Review and Challenges [0.0]
フェデレーテッド・ラーニング(FL)は、医療や交通システムなど、さまざまな分野で大きな関心を集めている。
我々は,IoTシナリオにおける異なる攻撃を検出するために,異なるデータ分布を考慮したマルチクラス分類器に基づくFL対応IDSアプローチを評価する。
我々は,既存の文献と評価結果の分析に基づいて,課題の集合と今後の方向性を同定する。
論文 参考訳(メタデータ) (2021-08-02T15:22:05Z) - Federated Learning for Industrial Internet of Things in Future
Industries [106.13524161081355]
産業用IoT(Industrial Internet of Things)は,産業用システムの運用を変革する有望な機会を提供する。
近年、人工知能(AI)はインテリジェントIIoTアプリケーションの実現に広く利用されている。
フェデレートラーニング(FL)は、複数のIIoTデバイスとマシンを協調して、ネットワークエッジでAIトレーニングを実行することで、インテリジェントなIIoTネットワークにとって特に魅力的である。
論文 参考訳(メタデータ) (2021-05-31T01:02:59Z) - Machine Learning Based Solutions for Security of Internet of Things
(IoT): A Survey [8.108571247838206]
IoTプラットフォームは、到達不可能なスマートサービスで人間の生活を前進させることによって、私たちの日常生活のあらゆる側面をつかむ、グローバルな巨人へと発展してきた。
IoTを保護するために適用可能なセキュリティ対策は,すでに存在する。
伝統的なテクニックは、様々な攻撃タイプやその重大さと同様に、進歩ブームほど効率的ではない。
機械学習(ML)では、IoTの現在および将来の課題に対処する多くの研究ウィンドウがオープンされている。
論文 参考訳(メタデータ) (2020-04-11T03:08:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。