論文の概要: Powering the Future of IoT: Federated Learning for Optimized Power Consumption and Enhanced Privacy
- arxiv url: http://arxiv.org/abs/2405.03065v1
- Date: Sun, 5 May 2024 22:18:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 15:14:27.630667
- Title: Powering the Future of IoT: Federated Learning for Optimized Power Consumption and Enhanced Privacy
- Title(参考訳): IoTの未来を支える: 最適化された消費電力とプライバシー強化のためのフェデレーション学習
- Authors: Ghazaleh Shirvani, Saeid Ghasemshirazi,
- Abstract要約: フェデレートラーニングは、IoT環境における消費電力とデータプライバシの固有の課題に対処するための、有望なパラダイムとして登場します。
本稿では、電力消費を軽減し、プライバシとセキュリティ対策を強化することにより、IoTデバイスの長寿命化におけるFLの変革の可能性について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The widespread use of the Internet of Things has led to the development of large amounts of perception data, making it necessary to develop effective and scalable data analysis tools. Federated Learning emerges as a promising paradigm to address the inherent challenges of power consumption and data privacy in IoT environments. This paper explores the transformative potential of FL in enhancing the longevity of IoT devices by mitigating power consumption and enhancing privacy and security measures. We delve into the intricacies of FL, elucidating its components and applications within IoT ecosystems. Additionally, we discuss the critical characteristics and challenges of IoT, highlighting the need for such machine learning solutions in processing perception data. While FL introduces many benefits for IoT sustainability, it also has limitations. Through a comprehensive discussion and analysis, this paper elucidates the opportunities and constraints of FL in shaping the future of sustainable and secure IoT systems. Our findings highlight the importance of developing new approaches and conducting additional research to maximise the benefits of FL in creating a secure and privacy-focused IoT environment.
- Abstract(参考訳): モノのインターネットの普及により、大量の知覚データの開発がもたらされ、効果的でスケーラブルなデータ分析ツールを開発する必要がある。
フェデレートラーニングは、IoT環境における消費電力とデータプライバシの固有の課題に対処するための、有望なパラダイムとして登場します。
本稿では、電力消費を軽減し、プライバシとセキュリティ対策を強化することにより、IoTデバイスの長寿命化におけるFLの変革の可能性について検討する。
FLの複雑さを掘り下げ、IoTエコシステム内のコンポーネントやアプリケーションを解明しました。
さらに,IoTの重要な特徴と課題についても論じ,知覚データ処理における機械学習ソリューションの必要性を強調した。
FLはIoTサステナビリティに多くのメリットを導入しているが、制限もある。
本論文は,包括的議論と分析を通じて,持続的かつセキュアなIoTシステムの構築におけるFLの機会と制約を明らかにする。
我々の発見は、新しいアプローチを開発することの重要性を強調し、セキュアでプライバシを重視したIoT環境を構築する際のFLのメリットを最大化するための追加研究を実施している。
関連論文リスト
- Towards Sustainable IoT: Challenges, Solutions, and Future Directions for Device Longevity [0.0]
本研究は、IoTデバイスの早期解体に寄与する様々な難しさについて考察する。
セキュリティの脆弱性やユーザ認識のギャップ、ファッション駆動技術の動向の影響などの要因を調べることで、この論文は立法介入の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-05-26T04:05:01Z) - Harnessing Federated Generative Learning for Green and Sustainable Internet of Things [9.699977999019977]
One-shot Federated Learning (OSFL)は、IoTエコシステム内の持続可能性と機械学習を調和させる革新的なパラダイムである。
OSFLは、複数の反復的なコミュニケーションラウンドをひとつの操作にまとめることで、従来のフェデレートラーニング(FL)ワークフローに革命をもたらす。
私たちの研究は、エネルギー効率のよいスマートシティや画期的なヘルスケアソリューションといった領域にまたがるIoTアプリケーションの景観を再構築する、OSFLの変革的な可能性を強調しています。
論文 参考訳(メタデータ) (2024-04-30T17:15:26Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
本稿では,プロトコルスタックのすべてのレベルにわたってフェデレートラーニングを実装することの付加価値について検討する。
それは重要なFLアプリケーションを示し、ホットトピックに対処し、将来の研究と開発のための貴重な洞察と明示的なガイダンスを提供します。
我々の結論は、FLと将来の6Gの相乗効果を活用しつつ、FLがワイヤレス産業に革命をもたらす可能性を浮き彫りにすることを目的としています。
論文 参考訳(メタデータ) (2023-12-07T20:39:57Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Federated Learning in IoT: a Survey from a Resource-Constrained
Perspective [0.0]
分散機械学習技術であるフェデレートラーニング(FL)は、さまざまな分散データソースから機械学習モデルを収集、トレーニングするために広く使用されている。
しかし、IoTデバイスのリソース制限の性質は、現実世界における大規模デプロイメントFLを妨げている。
本研究では,資源制約型モノのインターネット(IoT)環境におけるフェデレートラーニング(FL)導入に伴う課題と解決策を包括的に調査する。
論文 参考訳(メタデータ) (2023-08-25T03:31:22Z) - Over-The-Air Federated Learning: Status Quo, Open Challenges, and Future
Directions [78.5371215066019]
オーバー・ザ・エア・フェデレーション・ラーニング(OTA-FL)は、ネットワークエッジのユーザがスペクトルリソースを共有でき、効率的で低レイテンシなグローバルモデルアグリゲーションを実現する。
本稿では,OTA-FLの進展を概観し,今後の研究方向性について述べる。
論文 参考訳(メタデータ) (2023-07-03T12:44:52Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
インターネット・オブ・センセーズ(IoS)は、すべてのヒト受容体に対する欠陥のないテレプレゼンススタイルのコミュニケーションを約束する。
我々は,新たなセマンティックコミュニケーションと人工知能(AI)/機械学習(ML)パラダイムがIoSユースケースの要件を満たす方法について詳しく述べる。
論文 参考訳(メタデータ) (2022-12-21T03:37:38Z) - A Federated Learning-enabled Smart Street Light Monitoring Application:
Benefits and Future Challenges [1.405197962967472]
フェデレートラーニング(FL)は、プライバシ保護とコミュニケーションの効率的な機械学習フレームワークを提供する上で、重要な役割を担います。
スマートシティス街灯監視アプリケーションにおけるFLの実現可能性について検討した。
論文 参考訳(メタデータ) (2022-08-27T12:26:25Z) - Exploring Deep Reinforcement Learning-Assisted Federated Learning for
Online Resource Allocation in EdgeIoT [53.68792408315411]
フェデレートラーニング(FL)は、モバイルエッジコンピューティングベースのInternet of Thing(EdgeIoT)における盗聴攻撃からデータトレーニングプライバシを保護するために、ますます検討されている。
本研究では,連続領域における最適精度とエネルギー収支を達成するために,FLDLT3フレームワークを提案する。
その結果、FL-DLT3は100回未満の高速収束を実現し、FLの精度-エネルギー消費比は既存の最先端ベンチマークと比較して51.8%向上した。
論文 参考訳(メタデータ) (2022-02-15T13:36:15Z) - The Internet of Federated Things (IoFT): A Vision for the Future and
In-depth Survey of Data-driven Approaches for Federated Learning [12.754922966044687]
IoT(Internet of Things)は、大きなパラダイムシフトの渦中にあります。
将来IoTシステムであるIoFTでは、クラウドは、モデルのトレーニングをエッジに持ってくる群衆によって置き換えられる。
本稿は、IoFTのビジョンと、このビジョンの実現に向けた現在の取り組みの体系的な概要を提供する。
論文 参考訳(メタデータ) (2021-11-09T18:52:26Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。