Online Inference for Mixture Model of Streaming Graph Signals with
Non-White Excitation
- URL: http://arxiv.org/abs/2207.14019v1
- Date: Thu, 28 Jul 2022 11:25:47 GMT
- Title: Online Inference for Mixture Model of Streaming Graph Signals with
Non-White Excitation
- Authors: Yiran He, Hoi-To Wai
- Abstract summary: We study a mixture model of filtered low pass graph signals with possibly non-white and low-rank excitation.
As a remedy, we consider an inference problem focusing on the node centrality of graphs.
We propose a novel online EM algorithm for inference from streaming data.
- Score: 34.30390182564043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers a joint multi-graph inference and clustering problem for
simultaneous inference of node centrality and association of graph signals with
their graphs. We study a mixture model of filtered low pass graph signals with
possibly non-white and low-rank excitation. While the mixture model is
motivated from practical scenarios, it presents significant challenges to prior
graph learning methods. As a remedy, we consider an inference problem focusing
on the node centrality of graphs. We design an expectation-maximization (EM)
algorithm with a unique low-rank plus sparse prior derived from low pass signal
property. We propose a novel online EM algorithm for inference from streaming
data. As an example, we extend the online algorithm to detect if the signals
are generated from an abnormal graph. We show that the proposed algorithms
converge to a stationary point of the maximum-a-posterior (MAP) problem.
Numerical experiments support our analysis.
Related papers
- Online Network Inference from Graph-Stationary Signals with Hidden Nodes [31.927912288598467]
We present a novel method for online graph estimation that accounts for the presence of hidden nodes.
We then formulate a convex optimization problem for graph learning from streaming, incomplete graph signals.
arXiv Detail & Related papers (2024-09-13T12:09:09Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph
Clustering [29.17784041837907]
We propose Adaptive Hybrid Graph Filter for Multi-View Graph Clustering (AHGFC)
AHGFC learns the node embedding based on the graph joint aggregation matrix.
Experimental results show that our proposed model performs well on six datasets containing homophilous and heterophilous graphs.
arXiv Detail & Related papers (2024-01-05T07:27:29Z) - Graphon based Clustering and Testing of Networks: Algorithms and Theory [11.3700474413248]
Network-valued data are encountered in a wide range of applications and pose challenges in learning.
We present two clustering algorithms that achieve state-of-the-art results.
We further study the applicability of the proposed distance for graph two-sample testing problems.
arXiv Detail & Related papers (2021-10-06T13:14:44Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
We consider the problem of inferring the graph structure from a given set of graph signals.
Traditional graph learning models do not take this distributional uncertainty into account.
arXiv Detail & Related papers (2021-05-12T06:47:34Z) - Multilayer Graph Clustering with Optimized Node Embedding [70.1053472751897]
multilayer graph clustering aims at dividing the graph nodes into categories or communities.
We propose a clustering-friendly embedding of the layers of a given multilayer graph.
Experiments show that our method leads to a significant improvement.
arXiv Detail & Related papers (2021-03-30T17:36:40Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
In this paper, we combine classical graph signal filtering with deep feature learning into a competitive hybrid design.
We employ interpretable analytical low-pass graph filters and employ 80% fewer network parameters than state-of-the-art DL denoising scheme DnCNN.
arXiv Detail & Related papers (2020-10-21T20:04:22Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.