Towards Large-Scale Small Object Detection: Survey and Benchmarks
- URL: http://arxiv.org/abs/2207.14096v4
- Date: Tue, 11 Apr 2023 03:58:28 GMT
- Title: Towards Large-Scale Small Object Detection: Survey and Benchmarks
- Authors: Gong Cheng, Xiang Yuan, Xiwen Yao, Kebing Yan, Qinghua Zeng, Xingxing
Xie, and Junwei Han
- Abstract summary: We construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively.
For SODA-A, we harvest 2513 high resolution aerial images and annotate 872069 instances over nine classes.
The proposed datasets are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances.
- Score: 48.961205652306695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of deep convolutional neural networks, object detection has
achieved prominent advances in past years. However, such prosperity could not
camouflage the unsatisfactory situation of Small Object Detection (SOD), one of
the notoriously challenging tasks in computer vision, owing to the poor visual
appearance and noisy representation caused by the intrinsic structure of small
targets. In addition, large-scale dataset for benchmarking small object
detection methods remains a bottleneck. In this paper, we first conduct a
thorough review of small object detection. Then, to catalyze the development of
SOD, we construct two large-scale Small Object Detection dAtasets (SODA),
SODA-D and SODA-A, which focus on the Driving and Aerial scenarios
respectively. SODA-D includes 24828 high-quality traffic images and 278433
instances of nine categories. For SODA-A, we harvest 2513 high resolution
aerial images and annotate 872069 instances over nine classes. The proposed
datasets, as we know, are the first-ever attempt to large-scale benchmarks with
a vast collection of exhaustively annotated instances tailored for
multi-category SOD. Finally, we evaluate the performance of mainstream methods
on SODA. We expect the released benchmarks could facilitate the development of
SOD and spawn more breakthroughs in this field. Datasets and codes are
available at: \url{https://shaunyuan22.github.io/SODA}.
Related papers
- XS-VID: An Extremely Small Video Object Detection Dataset [33.62124448175971]
We develop the XS-VID dataset, which comprises aerial data from various periods and scenes, and annotates eight major object categories.
To further evaluate existing methods for detecting extremely small objects, XS-VID extensively collects three types of objects with smaller pixel areas.
We propose YOLOFT, which enhances local feature associations and integrates temporal motion features, significantly improving the accuracy and stability of SVOD.
arXiv Detail & Related papers (2024-07-25T15:42:46Z) - ESOD: Efficient Small Object Detection on High-Resolution Images [36.80623357577051]
Small objects are usually sparsely distributed and locally clustered.
Massive feature extraction computations are wasted on the non-target background area of images.
We propose to reuse the detector's backbone to conduct feature-level object-seeking and patch-slicing.
arXiv Detail & Related papers (2024-07-23T12:21:23Z) - Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
We introduce a self-reconstruction mechanism in the detection model, and discover the strong correlation between it and the tiny objects.
Specifically, we impose a reconstruction head in-between the neck of a detector, constructing a difference map of the reconstructed image and the input, which shows high sensitivity to tiny objects.
We further develop a Difference Map Guided Feature Enhancement (DGFE) module to make the tiny feature representation more clear.
arXiv Detail & Related papers (2024-05-18T12:22:26Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
Small object detection remains unsatisfactory due to limited characteristics and high density and mutual overlap.
We propose methods enhancing sampling within an end-to-end framework.
Our model demonstrates a significant enhancement, achieving a 2.9% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset.
arXiv Detail & Related papers (2024-05-17T04:37:44Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
Anomaly detection (AD) is often focused on detecting anomalies for industrial quality inspection and medical lesion examination.
This work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field.
Inspired by the metrics in the segmentation field, we propose several more practical threshold-dependent AD-specific metrics.
arXiv Detail & Related papers (2024-04-16T17:38:26Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Detecting tiny objects in aerial images: A normalized Wasserstein
distance and a new benchmark [45.10513110142015]
We propose a new evaluation metric dubbed Normalized Wasserstein Distance (NWD) and a new RanKing-based Assigning (RKA) strategy for tiny object detection.
The proposed NWD-RKA strategy can be easily embedded into all kinds of anchor-based detectors to replace the standard IoU threshold-based one.
Tested on four datasets, NWD-RKA can consistently improve tiny object detection performance by a large margin.
arXiv Detail & Related papers (2022-06-28T13:33:06Z) - Object Detection in Aerial Images: A Large-Scale Benchmark and
Challenges [124.48654341780431]
We present a large-scale dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI.
The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images.
We build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated.
arXiv Detail & Related papers (2021-02-24T11:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.