論文の概要: Learning with Limited Annotations: A Survey on Deep Semi-Supervised
Learning for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2207.14191v1
- Date: Thu, 28 Jul 2022 15:57:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-29 12:34:51.286306
- Title: Learning with Limited Annotations: A Survey on Deep Semi-Supervised
Learning for Medical Image Segmentation
- Title(参考訳): 限定アノテーションによる学習:医用画像セグメンテーションのための深層半監督学習に関する調査
- Authors: Rushi Jiao, Yichi Zhang, Le Ding, Rong Cai and Jicong Zhang
- Abstract要約: 本稿では,最近提案された医用画像分割のための半教師あり学習手法について概観する。
既存のアプローチの限界と未解決の問題を分析し,議論する。
- 参考スコア(独自算出の注目度): 7.512833628232063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation is a fundamental and critical step in many
image-guided clinical approaches. Recent success of deep learning-based
segmentation methods usually relies on a large amount of labeled data, which is
particularly difficult and costly to obtain especially in the medical imaging
domain where only experts can provide reliable and accurate annotations.
Semi-supervised learning has emerged as an appealing strategy and been widely
applied to medical image segmentation tasks to train deep models with limited
annotations. In this paper, we present a comprehensive review of recently
proposed semi-supervised learning methods for medical image segmentation and
summarized both the technical novelties and empirical results. Furthermore, we
analyze and discuss the limitations and several unsolved problems of existing
approaches. We hope this review could inspire the research community to explore
solutions for this challenge and further promote the developments in medical
image segmentation field.
- Abstract(参考訳): 医用画像のセグメンテーションは多くの画像誘導臨床における基本的かつ重要なステップである。
深層学習に基づくセグメンテーション手法の最近の成功は、一般的に大量のラベル付きデータに依存しており、特に信頼性と正確なアノテーションを提供する専門家のみの医療画像領域において、取得が困難でコストがかかる。
半教師付き学習は魅力的な戦略として登場し、限られたアノテーションで深層モデルを訓練するための医用画像分割タスクに広く応用されている。
本稿では,最近提案された医用画像分割のための半教師あり学習手法の総合的なレビューを行い,技術革新と実証結果の両方を要約する。
さらに,既存のアプローチの限界と未解決問題を分析し,議論する。
このレビューは、この課題に対する解決策を研究コミュニティに探求させ、医療画像セグメンテーション分野のさらなる発展を促すことを願っている。
関連論文リスト
- Beyond Pixel-Wise Supervision for Medical Image Segmentation: From Traditional Models to Foundation Models [7.987836953849249]
既存のセグメンテーションアルゴリズムは主に、トレーニング用のピクセル単位のアノテーションを備えた完全なアノテーション付きイメージの可用性に依存している。
この課題を軽減するため、弱いアノテーションで深層モデルをトレーニングできるセグメンテーション手法の開発に注目が集まっている。
視覚基盤モデルの出現、特にSAM(Segment Anything Model)は、弱いアノテーションを使ったセグメンテーションタスクの革新的な機能を導入した。
論文 参考訳(メタデータ) (2024-04-20T02:40:49Z) - Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey [49.47197748663787]
本総説は, 半教師付きセマンティックセグメンテーション分野における擬似ラベル手法に関する最新の研究成果について, 包括的かつ組織的に概観することを目的としている。
さらに,医用およびリモートセンシング画像のセグメンテーションにおける擬似ラベル技術の適用について検討する。
論文 参考訳(メタデータ) (2024-03-04T10:18:38Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - A Systematic Review of Few-Shot Learning in Medical Imaging [1.049712834719005]
少ないショットの学習技術は、データの不足を減らし、医療画像分析を強化する。
この体系的なレビューは、医療画像における数ショット学習の概要を包括的に示すものである。
論文 参考訳(メタデータ) (2023-09-20T16:10:53Z) - Trustworthy Deep Learning for Medical Image Segmentation [1.0152838128195467]
深層学習に基づくセグメンテーション法の主な制限は、画像取得プロトコルにおける可変性に対する堅牢性の欠如である。
多くの場合、手動による医用画像のセグメンテーションは高度に熟練したラッカーを必要とし、時間を要する。
この論文は、これらの制限を緩和する新しい数学的および最適化手法を導入している。
論文 参考訳(メタデータ) (2023-05-27T12:12:53Z) - Medical Image Segmentation with Limited Supervision: A Review of Deep
Network Models [4.902303262071206]
ほとんどの最先端モデルは、大規模な注釈付きトレーニングの例に大きく依存しており、臨床や医療のタスクでは利用できないことが多い。
医学画像セグメンテーションにおける深層学習モデルを成功させるためには,限られた注記を含む限られた監督から学習と一般化の強い能力が不可欠である。
論文 参考訳(メタデータ) (2021-02-28T08:52:49Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Trends in deep learning for medical hyperspectral image analysis [2.2404871878551353]
本稿では,現在ディープラーニングを用いて医療用ハイパースペクトル画像の効果的な分析を行う出版物について検討する。
本研究は, 医用ハイパースペクトル画像解析のための分類, 分別, 検出における深層学習の活用を概観するものである。
論文 参考訳(メタデータ) (2020-11-27T19:42:06Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。