論文の概要: Dynamically evolving segment anything model with continuous learning for medical image segmentation
- arxiv url: http://arxiv.org/abs/2503.06236v1
- Date: Sat, 08 Mar 2025 14:37:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:49:11.911745
- Title: Dynamically evolving segment anything model with continuous learning for medical image segmentation
- Title(参考訳): 医用画像分割のための連続学習を用いた動的に進化するセグメントモデル
- Authors: Zhaori Liu, Mengyang Li, Hu Han, Enli Zhang, Shiguang Shan, Zhiming Zhao,
- Abstract要約: ダイナミックに進化する医療画像セグメンテーションモデルであるEvoSAMを紹介する。
EvoSAMは、継続的に拡張されるシナリオとタスクの配列から新しい知識を蓄積する。
血管セグメンテーションに関する外科医による実験により、EvoSAMはユーザプロンプトに基づいてセグメンテーション効率を高めることが確認された。
- 参考スコア(独自算出の注目度): 50.92344083895528
- License:
- Abstract: Medical image segmentation is essential for clinical diagnosis, surgical planning, and treatment monitoring. Traditional approaches typically strive to tackle all medical image segmentation scenarios via one-time learning. However, in practical applications, the diversity of scenarios and tasks in medical image segmentation continues to expand, necessitating models that can dynamically evolve to meet the demands of various segmentation tasks. Here, we introduce EvoSAM, a dynamically evolving medical image segmentation model that continuously accumulates new knowledge from an ever-expanding array of scenarios and tasks, enhancing its segmentation capabilities. Extensive evaluations on surgical image blood vessel segmentation and multi-site prostate MRI segmentation demonstrate that EvoSAM not only improves segmentation accuracy but also mitigates catastrophic forgetting. Further experiments conducted by surgical clinicians on blood vessel segmentation confirm that EvoSAM enhances segmentation efficiency based on user prompts, highlighting its potential as a promising tool for clinical applications.
- Abstract(参考訳): 医用画像分割は臨床診断、手術計画、治療監視に不可欠である。
従来のアプローチは、通常、一度に学習することで、すべての医療画像セグメンテーションシナリオに取り組みます。
しかし、現実的な応用においては、様々なセグメンテーションタスクの要求を満たすために動的に進化できるモデルを必要とする医療画像セグメンテーションにおけるシナリオやタスクの多様性が拡大し続けている。
本稿では,ダイナミックに進化する医療画像セグメンテーションモデルであるEvoSAMについて紹介する。
外科的画像血管の分画と多部位前立腺MRIの分画に関する広範囲な評価は、EvoSAMが分画精度を向上するだけでなく、破滅的忘れを緩和することを示した。
外科医による血管セグメンテーションに関するさらなる実験は、EvoSAMがユーザプロンプトに基づいてセグメンテーション効率を高めることを確認し、臨床応用のための有望なツールとしての可能性を強調した。
関連論文リスト
- MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
本稿では,CLIPモデルとSAMモデルを組み合わせて臨床スキャンのセグメンテーションを生成する新しいフレームワーク MedCLIP-SAM を提案する。
3つの多様なセグメンテーションタスクと医用画像モダリティを広範囲にテストすることにより、提案手法は優れた精度を示した。
論文 参考訳(メタデータ) (2024-03-29T15:59:11Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
Mask-Enhanced SAM (M-SAM) は, 腫瘍の3次元セグメント化に適した革新的なアーキテクチャである。
本稿では,M-SAM内におけるMask-Enhanced Adapter (MEA) を提案する。
我々のM-SAMは高いセグメンテーション精度を達成し、またロバストな一般化を示す。
論文 参考訳(メタデータ) (2024-03-09T13:37:02Z) - Segment Anything Model for Medical Image Segmentation: Current
Applications and Future Directions [8.216028136706948]
最近のSAM(Segment Anything Model)の導入は、プロンプト駆動パラダイムのイメージセグメンテーション領域への注目すべき拡張を意味している。
本稿では,SAMの有効性を医療画像分割タスクに拡張するための最近の取り組みについて概観する。
医療画像セグメンテーションにおけるSAMの役割について,今後の研究の道筋を探る。
論文 参考訳(メタデータ) (2024-01-07T14:25:42Z) - From CNN to Transformer: A Review of Medical Image Segmentation Models [7.3150850275578145]
医用画像セグメンテーションのための深層学習が主流となっている。
本稿では,近年最も代表的な4つの医用画像セグメンテーションモデルについて調査する。
理論的にこれらのモデルの特徴を解析し、2つのベンチマークデータセット上でそれらの性能を定量的に評価する。
論文 参考訳(メタデータ) (2023-08-10T02:48:57Z) - Towards Segment Anything Model (SAM) for Medical Image Segmentation: A
Survey [8.76496233192512]
本稿では,セグメンテーションモデルの成功を医療画像のセグメンテーションタスクに拡張する取り組みについて論じる。
医用画像解析の基礎モデルを開発するために、将来の研究を導くために多くの洞察が導かれる。
論文 参考訳(メタデータ) (2023-05-05T16:48:45Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。