Quantum Vulnerability Analysis to Accurate Estimate the Quantum Algorithm Success Rate
- URL: http://arxiv.org/abs/2207.14446v2
- Date: Tue, 26 Mar 2024 17:48:51 GMT
- Title: Quantum Vulnerability Analysis to Accurate Estimate the Quantum Algorithm Success Rate
- Authors: Fang Qi, Kaitlin N. Smith, Travis LeCompte, Nianfeng Tzeng, Xu Yuan, Frederic T. Chong, Lu Peng,
- Abstract summary: Quantum computers suffer from noise during computation that is not fully understood.
In this article, we propose quantum vulnerability analysis (QVA) to quantify the error impact on quantum applications.
- Score: 21.46259138110464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum program performance. The ESP suffers poor prediction since it fails to account for the unique combination of circuit structure, quantum state, and quantum computer properties specific to each program execution. Thus, an urgent need exists for a systematic approach that can elucidate various noise impacts and accurately and robustly predict quantum computer success rates, emphasizing application and device scaling. In this article, we propose quantum vulnerability analysis (QVA) to systematically quantify the error impact on quantum applications and address the gap between current success rate (SR) estimators and real quantum computer results. The QVA determines the cumulative quantum vulnerability (CQV) of the target quantum computation, which quantifies the quantum error impact based on the entire algorithm applied to the target quantum machine. By evaluating the CQV with well-known benchmarks on three 27-qubit quantum computers, the CQV success estimation outperforms the estimated probability of success state-of-the-art prediction technique by achieving on average six times less relative prediction error, with best cases at 30 times, for benchmarks with a real SR rate above 0.1%. Direct application of QVA has been provided that helps researchers choose a promising compiling strategy at compile time.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - ArsoNISQ: Analyzing Quantum Algorithms on Near-Term Architectures [0.18188255328029254]
We introduce the ArsoNISQ framework that determines the tolerable error rate of a given quantum algorithm.
ArsoNISQ is based on simulations of quantum circuits subject to errors according to the Pauli error model.
arXiv Detail & Related papers (2023-01-18T02:09:48Z) - Noise-robust ground state energy estimates from deep quantum circuits [0.0]
We show how the underlying energy estimate explicitly filters out incoherent noise in quantum algorithms.
We implement QCM for a model of quantum magnetism on IBM Quantum hardware.
We find that QCM maintains a remarkably high degree of error robustness where VQE completely fails.
arXiv Detail & Related papers (2022-11-16T09:12:55Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Reducing runtime and error in VQE using deeper and noisier quantum
circuits [0.0]
A core of many quantum algorithms including VQE, can be improved in terms of precision and accuracy by using a technique we call Robust Amplitude Estimation.
By using deeper, and therefore more error-prone, quantum circuits, we realize more accurate quantum computations in less time.
This technique may be used to speed up quantum computations into the regime of early fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-10-20T17:11:29Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Randomized compiling for scalable quantum computing on a noisy
superconducting quantum processor [0.0]
Coherent errors limit the performance of quantum algorithms in an unpredictable manner.
Average error rates measured by randomized benchmarking and related protocols are not sensitive to the full impact of coherent errors.
Our results demonstrate that randomized compiling can be utilized to leverage and predict the capabilities of modern-day noisy quantum processors.
arXiv Detail & Related papers (2020-10-01T06:52:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.