Distinguishing Quantum Software Bugs from Hardware Noise: A Statistical Approach
- URL: http://arxiv.org/abs/2507.20475v1
- Date: Mon, 28 Jul 2025 02:21:39 GMT
- Title: Distinguishing Quantum Software Bugs from Hardware Noise: A Statistical Approach
- Authors: Ahmik Virani, Devraj, Anirudh Suresh, Lei Zhang, M V Panduranga Rao,
- Abstract summary: We propose a statistical approach to differentiate between quantum software bugs and hardware noise.<n>We evaluate our methodology using well-known quantum algorithms, including Grover's algorithm, Deutsch-Jozsa algorithm, and Simon's algorithm.
- Score: 4.00671924018776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing in the Noisy Intermediate-Scale Quantum (NISQ) era presents significant challenges in differentiating quantum software bugs from hardware noise. Traditional debugging techniques from classical software engineering cannot directly resolve this issue due to the inherently stochastic nature of quantum computation mixed with noises from NISQ computers. To address this gap, we propose a statistical approach leveraging probabilistic metrics to differentiate between quantum software bugs and hardware noise. We evaluate our methodology empirically using well-known quantum algorithms, including Grover's algorithm, Deutsch-Jozsa algorithm, and Simon's algorithm. Experimental results demonstrate the efficacy and practical applicability of our approach, providing quantum software developers with a reliable analytical tool to identify and classify unexpected behavior in quantum programs.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation
via Neural Networks [0.4779196219827508]
Variational Quantum Eigensolver (VQE) is a promising algorithm for solving complex quantum problems.
The ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes.
This research introduces a novel approach by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations.
arXiv Detail & Related papers (2024-03-10T15:35:41Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Study of the effect of quantum noise on the accuracy of the Schrodinger
equation simulation on a quantum computer using the Zalka-Wiesner method [0.0]
We study the effect of quantum noise on the accuracy of modeling quantum systems on a quantum computer using the Zalka-Wiesner method.
The analysis and prediction of accuracy for the Zalka-Wiesner method are carried out taking into account the complexity of the quantum system and the strength of quantum noise.
arXiv Detail & Related papers (2022-01-09T19:02:43Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Algorithmic Error Mitigation Scheme for Current Quantum Processors [0.0]
We present a hardware agnostic error mitigation algorithm for near term quantum processors inspired by the classical Lanczos method.
We demonstrate through numerical simulations and experiments on IBM Quantum hardware that the proposed scheme significantly increases the accuracy of cost functions evaluations.
arXiv Detail & Related papers (2020-08-25T09:48:20Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
We define a formal framework for the verification and analysis of quantum machine learning algorithms against noises.
A robust bound is derived and an algorithm is developed to check whether or not a quantum machine learning algorithm is robust with respect to quantum training data.
Our approach is implemented on Google's Quantum classifier and can verify the robustness of quantum machine learning algorithms with respect to a small disturbance of noises.
arXiv Detail & Related papers (2020-08-17T11:56:23Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.