Universal transition of spectral fluctuation in particle-hole symmetric
system
- URL: http://arxiv.org/abs/2207.14665v2
- Date: Wed, 9 Aug 2023 09:52:20 GMT
- Title: Universal transition of spectral fluctuation in particle-hole symmetric
system
- Authors: Triparna Mondal and Shashi C. L. Srivastava
- Abstract summary: We study the spectral properties of a system with particle-hole symmetry in random matrix setting.
We observe a crossover from Poisson to Wigner-Dyson like behavior in average local ratio of spacing within a spectrum of single matrix.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the spectral properties of a multiparametric system having
particle-hole symmetry in random matrix setting. We observe a crossover from
Poisson to Wigner-Dyson like behavior in average local ratio of spacing within
a spectrum of single matrix as a function of effective single parameter
referred to as complexity parameter. The average local ratio of spacing varies
logarithmically in complexity parameter across the transition. This behavior is
universal for different ensembles subjected to same matrix constraint like
particle-hole symmetry. The universality of this dependence is further
established by studying interpolating ensemble connecting systems with
particle-hole symmetry to that with chiral symmetry. For each interpolating
ensemble the behavior remains logarithmic in complexity parameter. We verify
this universality of spectral fluctuation in case of a 2D Su-Schrieffer-Heeger
(SSH) like model along with the logarithmic dependence on complexity parameter
for ratio of spacing during transition from integrable to non-integrable limit.
Related papers
- Hierarchical analytical approach to universal spectral correlations in Brownian Quantum Chaos [44.99833362998488]
We develop an analytical approach to the spectral form factor and out-of-time ordered correlators in zero-dimensional Brownian models of quantum chaos.
arXiv Detail & Related papers (2024-10-21T10:56:49Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Universality of spectral fluctuations in open quantum chaotic systems [1.1557918404865375]
We study the non-Hermitian and non-unitary ensembles based on the symmetry of matrix elements.
We show that the fluctuation statistics of these ensembles are universal and quantum chaotic systems belonging to OE, UE, and SE.
arXiv Detail & Related papers (2024-01-08T18:30:18Z) - Spectral fluctuations of multiparametric complex matrix ensembles:
evidence of a single parameter dependence [0.0]
We numerically analyze the spectral statistics of the multiparametric Gaussian ensembles of complex matrices with zero mean and variances with different decay routes away from the diagonals.
Such ensembles can serve as good models for a wide range of phase transitions e.g. localization to delocalization in non-Hermitian systems or Hermitian to non-Hermitian one.
arXiv Detail & Related papers (2023-12-13T15:21:35Z) - Stochastic parameter optimization analysis of dynamical quantum critical phenomena in long-range transverse-field Ising chain [0.0]
We explore the quantum phase transition of the one-dimensional long-range transverse-field Ising model.
In our simulations, the simulator automatically determines the parameters to sample from, even without prior knowledge of the critical point and universality class.
We successfully obtained numerical evidence supporting $sigma = 7/4$ as the universality boundary between the latter two.
arXiv Detail & Related papers (2023-05-23T14:46:16Z) - Order-invariant two-photon quantum correlations in PT-symmetric
interferometers [62.997667081978825]
Multiphoton correlations in linear photonic quantum networks are governed by matrix permanents.
We show that the overall multiphoton behavior of a network from its individual building blocks typically defies intuition.
Our results underline new ways in which quantum correlations may be preserved in counterintuitive ways even in small-scale non-Hermitian networks.
arXiv Detail & Related papers (2023-02-23T09:43:49Z) - Universal spectral correlations in interacting chaotic few-body quantum
systems [0.0]
We study correlations in terms of the spectral form factor and its moments in interacting chaotic few- and many-body systems.
We find a universal transition from the non-interacting to the strongly interacting case, which can be described as a simple combination of these two limits.
arXiv Detail & Related papers (2023-02-20T12:49:59Z) - Spectral crossover in non-hermitian spin chains: comparison with random
matrix theory [1.0793830805346494]
We study the short range spectral fluctuation properties of three non-hermitian spin chain hamiltonians using complex spacing ratios.
The presence of a random field along the $x$-direction together with the one along $z$ facilitates integrability and $mathcalRT$-symmetry breaking.
arXiv Detail & Related papers (2023-02-02T21:26:44Z) - Oracle-Preserving Latent Flows [58.720142291102135]
We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
arXiv Detail & Related papers (2023-02-02T00:13:32Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.