Universal spectral correlations in interacting chaotic few-body quantum
systems
- URL: http://arxiv.org/abs/2302.09955v3
- Date: Thu, 23 Nov 2023 13:54:06 GMT
- Title: Universal spectral correlations in interacting chaotic few-body quantum
systems
- Authors: Felix Fritzsch and Maximilian F. I. Kieler
- Abstract summary: We study correlations in terms of the spectral form factor and its moments in interacting chaotic few- and many-body systems.
We find a universal transition from the non-interacting to the strongly interacting case, which can be described as a simple combination of these two limits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of random matrix spectral correlations in interacting quantum
systems is a defining feature of quantum chaos. We study such correlations in
terms of the spectral form factor and its moments in interacting chaotic few-
and many-body systems, modeled by suitable random-matrix ensembles. We obtain
the spectral form factor exactly for large Hilbert space dimension.
Extrapolating those results to finite Hilbert space dimension we find a
universal transition from the non-interacting to the strongly interacting case,
which can be described as a simple combination of these two limits. This
transition is governed by a single scaling parameter. In the bipartite case we
derive similar results also for all moments of the spectral form factor. We
confirm our results by extensive numerical studies and demonstrate that they
apply to more realistic systems given by a pair of quantized kicked rotors as
well. Ultimately we complement our analysis by a perturbative approach covering
the small coupling regime.
Related papers
- Eigenstate Correlations in Dual-Unitary Quantum Circuits: Partial Spectral Form Factor [0.0]
Analytic insights into eigenstate correlations can be obtained by the recently introduced partial spectral form factor.
We study the partial spectral form factor in chaotic dual-unitary quantum circuits in the thermodynamic limit.
arXiv Detail & Related papers (2024-07-29T12:02:24Z) - Universality of spectral fluctuations in open quantum chaotic systems [1.1557918404865375]
We study the non-Hermitian and non-unitary ensembles based on the symmetry of matrix elements.
We show that the fluctuation statistics of these ensembles are universal and quantum chaotic systems belonging to OE, UE, and SE.
arXiv Detail & Related papers (2024-01-08T18:30:18Z) - Boundary Chaos: Spectral Form Factor [0.0]
Random matrix spectral correlations are a defining feature of quantum chaos.
We study such correlations in a minimal model of chaotic many-body quantum dynamics.
We find they coincide with random matrix theory, possibly after a non-zero Thouless time.
arXiv Detail & Related papers (2023-12-14T11:28:43Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Universal spectral correlations in interacting chaotic few-body quantum
systems [0.0]
We show that the transition of the spectral form factor from the non-interacting to the strongly interacting case can be described as a simple combination of these two limiting cases.
Our approach accurately captures spectral correlations in actual physical system, which we demonstrate for kicked coupled rotors.
arXiv Detail & Related papers (2023-02-17T16:37:08Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Probing quantum chaos in multipartite systems [4.771483851099131]
We show that the contribution of the subsystems to the global behavior can be revealed by probing the full counting statistics.
We show that signatures of quantum chaos in the time domain dictate a dip-ramp-plateau structure in the characteristic function.
Global quantum chaos can be suppressed at strong coupling.
arXiv Detail & Related papers (2021-11-24T13:06:25Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.