論文の概要: Enhanced Laser-Scan Matching with Online Error Estimation for Highway
and Tunnel Driving
- arxiv url: http://arxiv.org/abs/2207.14674v1
- Date: Fri, 29 Jul 2022 13:42:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-01 13:18:48.129775
- Title: Enhanced Laser-Scan Matching with Online Error Estimation for Highway
and Tunnel Driving
- Title(参考訳): 道路・トンネル走行におけるオンライン誤差推定とレーザースキャンマッチングの強化
- Authors: Matthew McDermott, Jason Rife
- Abstract要約: Lidarデータは、自動運転車やモバイルロボットプラットフォームのナビゲーションのためのポイントクラウドを生成するために使用できる。
本稿では,2つの新しい改良点を提供するスキャンマッチングアルゴリズムであるIterative Closest Ellipsoidal Transform (ICET)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lidar data can be used to generate point clouds for the navigation of
autonomous vehicles or mobile robotics platforms. Scan matching, the process of
estimating the rigid transformation that best aligns two point clouds, is the
basis for lidar odometry, a form of dead reckoning. Lidar odometry is
particularly useful when absolute sensors, like GPS, are not available. Here we
propose the Iterative Closest Ellipsoidal Transform (ICET), a scan matching
algorithm which provides two novel improvements over the current
state-of-the-art Normal Distributions Transform (NDT). Like NDT, ICET
decomposes lidar data into voxels and fits a Gaussian distribution to the
points within each voxel. The first innovation of ICET reduces geometric
ambiguity along large flat surfaces by suppressing the solution along those
directions. The second innovation of ICET is to infer the output error
covariance associated with the position and orientation transformation between
successive point clouds; the error covariance is particularly useful when ICET
is incorporated into a state-estimation routine such as an extended Kalman
filter. We constructed a simulation to compare the performance of ICET and NDT
in 2D space both with and without geometric ambiguity and found that ICET
produces superior estimates while accurately predicting solution accuracy.
- Abstract(参考訳): Lidarデータは、自動運転車やモバイルロボットプラットフォームのナビゲーションのためのポイントクラウドを生成するために使用できる。
スキャンマッチング(scan matching)は、2つの点の雲を最も整列させる剛性変換を推定するプロセスであり、lidarオドメトリーの基盤である。
ライダーオドメトリーは、GPSのような絶対的なセンサーが使えない場合に特に有用である。
本稿では,現在最先端の正規分布変換 (NDT) よりも2つの新しい改善点を提供するスキャンマッチングアルゴリズムであるイテレーティブ・クローズト・楕円形変換 (ICET) を提案する。
NDTと同様に、ICETはライダーデータをボクセルに分解し、各ボクセル内の点にガウス分布を適合させる。
ICETの最初の革新は、その方向に沿った解を抑えることにより、大きな平らな面に沿った幾何学的曖昧さを減らす。
ICETの第二の革新は、連続する点雲の位置と向きの変換に関連する出力誤差の共分散を推定することであり、この誤差共分散は、拡張カルマンフィルタのような状態推定ルーチンにICETを組み込んだ場合に特に有用である。
本研究では,2次元空間における icet と ndt の性能と幾何曖昧性の有無を比較したシミュレーションを行い,解の精度を精度良く予測しながら, icet が優れた推定値を生成することを見出した。
関連論文リスト
- SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
本研究では,SPAREを提案する。SPAREは,非剛性登録のための対称化点-平面間距離を用いた新しい定式化である。
提案手法は, 厳密でない登録問題の精度を大幅に向上し, 比較的高い解効率を維持する。
論文 参考訳(メタデータ) (2024-05-30T15:55:04Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - Robust Fully-Asynchronous Methods for Distributed Training over General Architecture [11.480605289411807]
分散機械学習問題における完全な同期は、レイテンシ、パッケージの損失、ストラグラーの存在のため、非効率であり、不可能である。
本稿では,R-FAST (Fully-Asynchronous Gradient Tracking Method) を提案する。
論文 参考訳(メタデータ) (2023-07-21T14:36:40Z) - ICET Online Accuracy Characterization for Geometry-Based Laser Scan
Matching [0.0]
Iterative Closest Ellipsoidal Transform (ICET)は、新しい3D LIDARスキャンマッチングアルゴリズムである。
ICETは、常にサブセンチメートルの精度でスキャンマッチングを行うことを示す。
このレベルの精度は、アルゴリズムが完全に解釈可能であるという事実と相まって、安全クリティカルな輸送用途に適している。
論文 参考訳(メタデータ) (2023-06-14T18:21:45Z) - Generative Adversarial Networks to infer velocity components in rotating
turbulent flows [2.0873604996221946]
CNNとGANは、ポイントワイドと統計的再構成の両方でEPODを常に上回ります。
解析は、予測と地上真実の間の空間距離$L$の標準検証ツールの両方を用いて行われる。
論文 参考訳(メタデータ) (2023-01-18T13:59:01Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) は、2D-3D特徴座標の3Dモデルに関して、高速で正確で堅牢なカメラローカライゼーションを目指している。
論文 参考訳(メタデータ) (2021-07-08T15:19:36Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
交通状態推定問題に対する純粋にデータ駆動型かつモデルフリーなソリューションを提案する。
このテンソル構造に低ランクな仮定を課すことで、大域的パターンと未知の複素局所力学の両方を近似することができる。
本研究では,合成シミュレーションデータと実世界の高分解能データの両方について数値実験を行い,提案モデルの有効性と優位性を実証した。
論文 参考訳(メタデータ) (2021-05-21T00:08:06Z) - LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point
Cloud Registration [1.8876415010297891]
剛点雲登録のための局所表面形状法 (LSG-CPD) を用いた CPD と呼ばれる新しい手法を提案する。
本手法は,局所表面の平坦度に基づいて,点対面のペナリゼーションに異なるレベルのペナリゼーションを適応的に付加する。
CPDの現代の実装よりもはるかに高速です。
論文 参考訳(メタデータ) (2021-03-28T03:46:41Z) - Canny-VO: Visual Odometry with RGB-D Cameras based on Geometric 3D-2D
Edge Alignment [85.32080531133799]
本稿では,自由形式の曲線登録に関する古典的な問題をレビューし,効率的なrgbdビジュアルオドメトリシステムcanny-voに適用する。
エッジ登録でよく用いられる距離変換の代替として、近似近接近傍場と配向近接近傍場という2つの方法が提案されている。
3D2Dエッジアライメントは、効率性と精度の両方の観点から、これらの代替製剤の恩恵を受けます。
論文 参考訳(メタデータ) (2020-12-15T11:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。