論文の概要: A Gradient Smoothed Functional Algorithm with Truncated Cauchy Random
Perturbations for Stochastic Optimization
- arxiv url: http://arxiv.org/abs/2208.00290v4
- Date: Fri, 30 Jun 2023 15:26:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-03 16:03:24.938653
- Title: A Gradient Smoothed Functional Algorithm with Truncated Cauchy Random
Perturbations for Stochastic Optimization
- Title(参考訳): 確率最適化のためのコーシーランダム摂動を用いた勾配平滑化関数アルゴリズム
- Authors: Akash Mondal, Prashanth L. A., Shalabh Bhatnagar
- Abstract要約: 本稿では,雑音の多いコストサンプルに対する期待値であるスムーズな目的関数を最小化するための凸勾配アルゴリズムを提案する。
また,本アルゴリズムは局所最小値への収束を示唆し,レートリリアを回避できることも示している。
- 参考スコア(独自算出の注目度): 10.820943271350442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a stochastic gradient algorithm for minimizing a
smooth objective function that is an expectation over noisy cost samples, and
only the latter are observed for any given parameter. Our algorithm employs a
gradient estimation scheme with random perturbations, which are formed using
the truncated Cauchy distribution from the delta sphere. We analyze the bias
and variance of the proposed gradient estimator. Our algorithm is found to be
particularly useful in the case when the objective function is non-convex, and
the parameter dimension is high. From an asymptotic convergence analysis, we
establish that our algorithm converges almost surely to the set of stationary
points of the objective function and obtains the asymptotic convergence rate.
We also show that our algorithm avoids unstable equilibria, implying
convergence to local minima. Further, we perform a non-asymptotic convergence
analysis of our algorithm. In particular, we establish here a non-asymptotic
bound for finding an epsilon-stationary point of the non-convex objective
function. Finally, we demonstrate numerically through simulations that the
performance of our algorithm outperforms GSF, SPSA, and RDSA by a significant
margin over a few non-convex settings and further validate its performance over
convex (noisy) objectives.
- Abstract(参考訳): 本稿では,ノイズのあるコストサンプルに対する期待値である滑らかな目的関数を最小化するための確率的勾配アルゴリズムを提案する。
提案アルゴリズムでは, デルタ球面から発生する散乱コーシー分布を用いて, ランダム摂動を用いた勾配推定手法を用いる。
提案した勾配推定器のバイアスとばらつきを解析する。
本アルゴリズムは, 目的関数が凸でない場合, パラメータ次元が高い場合に特に有用であることがわかった。
漸近収束解析により、我々のアルゴリズムは目的関数の定常点の集合にほぼ確実に収束し、漸近収束率を得る。
また,本アルゴリズムは不安定な平衡を回避し,局所最小値への収束を示唆することを示す。
さらに,本アルゴリズムの非漸近収束解析を行う。
特に、ここでは非凸目的関数のエプシロン定常点を見つけるための非漸近境界を確立する。
最後に,GSF,SPSA,RDSAの性能が,いくつかの非凸設定よりもかなり優れており,その性能が凸(ノイズ)目標よりも優れていることをシミュレーションにより数値的に示す。
関連論文リスト
- A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems [12.29270365918848]
提案アルゴリズムは、他のインテリアポイント法からの主観的特異な制約に基づいている。
提案アルゴリズムは,プロジェクション,ステップサイズ,シーケンスシーケンスのバランスを慎重に保ち,数値的および決定論的両方の設定において収束を保証する。
論文 参考訳(メタデータ) (2023-04-28T15:30:43Z) - An Algebraically Converging Stochastic Gradient Descent Algorithm for
Global Optimization [14.336473214524663]
アルゴリズムの主要な構成要素は、目的関数の値に基づくランダム性である。
アルゴリズムの収束を代数学で証明し、パラメータ空間でチューニングする。
アルゴリズムの効率性とロバスト性を示す数値的な例をいくつか提示する。
論文 参考訳(メタデータ) (2022-04-12T16:27:49Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
敵が損失関数を選択できるカテットガルバー2020onlineについて検討するが、一様にランダムな順序で提示される。
2020onlineアルゴリズムが最適境界を達成し,安定性を著しく向上することを示す。
論文 参考訳(メタデータ) (2021-06-29T09:48:46Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Asymptotic study of stochastic adaptive algorithm in non-convex
landscape [2.1320960069210484]
本稿では、最適化や機械学習に広く用いられる適応アルゴリズムの仮定特性について検討する。
このうちAdagradとRmspropは、ブラックボックスのディープラーニングアルゴリズムの大部分に関与している。
論文 参考訳(メタデータ) (2020-12-10T12:54:45Z) - Stochastic optimization with momentum: convergence, fluctuations, and
traps avoidance [0.0]
本稿では,重球法,ネステロフ加速勾配法(S-NAG),広く使用されているアダム法など,勾配勾配勾配のいくつかの変種を統一する一般最適化手法について検討する。
この回避は、非自明な常微分方程式のノイズ離散化として研究される。
論文 参考訳(メタデータ) (2020-12-07T19:14:49Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
強凸関数のゼロ次最適化問題について検討する。
予測勾配降下アルゴリズムのランダム化近似を考察する。
その結果,0次アルゴリズムはサンプルの複雑性や問題パラメータの点でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-14T10:42:23Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Non-asymptotic bounds for stochastic optimization with biased noisy
gradient oracles [8.655294504286635]
関数の測定値が推定誤差を持つ設定を捉えるために,バイアス付き勾配オラクルを導入する。
提案するオラクルは,例えば,独立分散シミュレーションと同一分散シミュレーションのバッチによるリスク計測推定の実践的な状況にある。
論文 参考訳(メタデータ) (2020-02-26T12:53:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。