A Multi-View Learning Approach to Enhance Automatic 12-Lead ECG
Diagnosis Performance
- URL: http://arxiv.org/abs/2208.00323v1
- Date: Sat, 30 Jul 2022 23:43:01 GMT
- Title: A Multi-View Learning Approach to Enhance Automatic 12-Lead ECG
Diagnosis Performance
- Authors: Jae-Won Choi, Dae-Yong Hong, Chan Jung, Eugene Hwang, Sung-Hyuk Park,
and Seung-Young Roh
- Abstract summary: This study proposes an ensemble-based multi-view learning approach with an ECG augmentation technique to achieve a higher performance than traditional automatic 12-lead ECG diagnosis methods.
The proposed model reports an F1 score of 0.840, which outperforms existing state-ofthe-art methods in the literature.
- Score: 0.240137930000971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performances of commonly used electrocardiogram (ECG) diagnosis models
have recently improved with the introduction of deep learning (DL). However,
the impact of various combinations of multiple DL components and/or the role of
data augmentation techniques on the diagnosis have not been sufficiently
investigated. This study proposes an ensemble-based multi-view learning
approach with an ECG augmentation technique to achieve a higher performance
than traditional automatic 12-lead ECG diagnosis methods. The data analysis
results show that the proposed model reports an F1 score of 0.840, which
outperforms existing state-ofthe-art methods in the literature.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
We propose a disease-specific attention-based deep learning model (DANet) for arrhythmia detection from short ECG recordings.
The novel idea is to introduce a soft-coding or hard-coding waveform enhanced module into existing deep neural networks.
For the soft-coding DANet, we also develop a learning framework combining self-supervised pre-training with two-stage supervised training.
arXiv Detail & Related papers (2024-07-25T13:27:10Z) - Foundation Models for ECG: Leveraging Hybrid Self-Supervised Learning for Advanced Cardiac Diagnostics [2.948318253609515]
Using foundation models enhanced by self-supervised learning (SSL) methods presents an innovative approach to electrocardiogram (ECG) analysis.
This study comprehensively evaluates foundation models for ECGs, leveraging SSL methods, including generative and contrastive learning.
We developed a Hybrid Learning (HL) for foundation models that improve the precision and reliability of cardiac diagnostics.
arXiv Detail & Related papers (2024-06-26T02:24:13Z) - Methodology and Real-World Applications of Dynamic Uncertain Causality Graph for Clinical Diagnosis with Explainability and Invariance [41.373856519548404]
Dynamic Uncertain Causality Graph (DUCG) approach is causality-driven, explainable, and invariant across different application scenarios.
46 DUCG models covering 54 chief complaints were constructed.
Over one million real diagnosis cases have been performed, with only 17 incorrect diagnoses identified.
arXiv Detail & Related papers (2024-06-09T11:37:45Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - A Dual-scale Lead-seperated Transformer With Lead-orthogonal Attention
And Meta-information For Ecg Classification [26.07181634056045]
This work proposes a dual-scale lead-separated transformer with lead-orthogonal attention and meta-information (DLTM-ECG)
ECG segments are interpreted as independent patches, and together with the reduced dimension signal, they form a dual-scale representation.
Our work has the potential for similar multichannel bioelectrical signal processing and physiological multimodal tasks.
arXiv Detail & Related papers (2022-11-23T08:45:34Z) - IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification [0.9449650062296824]
In clinical settings, a cardiologist makes a diagnosis based on the standard 12-channel ECG recording.
We propose a model that leverages the multiple-channel information available in the standard ECG recordings and learns patterns at the beat, rhythm, and channel level.
The experimental results show that our model achieved a macro-averaged ROC-AUC score of 0.9216, mean accuracy of 88.85%, and a maximum F1 score of 0.8057 on the PTB-XL dataset.
arXiv Detail & Related papers (2022-04-06T16:29:10Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Interpretable Deep Learning for Automatic Diagnosis of 12-lead
Electrocardiogram [15.464768773761527]
We developed a deep neural network for multi-label classification of cardiac arrhythmias in 12-lead ECG recordings.
The proposed model achieved an average area under the receiver operating characteristic curve (AUC) of 0.970 and an average F1 score of 0.813.
The best-performing leads are lead I, aVR, and V5 among 12 leads.
arXiv Detail & Related papers (2020-10-20T14:51:00Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.