論文の概要: Learning to generate Reliable Broadcast Algorithms
- arxiv url: http://arxiv.org/abs/2208.00525v1
- Date: Sun, 31 Jul 2022 21:45:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-02 14:57:39.457796
- Title: Learning to generate Reliable Broadcast Algorithms
- Title(参考訳): 信頼性のある放送アルゴリズムの学習
- Authors: Diogo Vaz, David R. Matos, Miguel L. Pardal, Miguel Correia
- Abstract要約: この研究は、Reinforcement Learningを使用して、正確で効率的なフォールトトレラントな分散アルゴリズムを生成するインテリジェントエージェントを提案する。
また,本手法により,文献で利用できるものと同等の性能で,フォールトトレラントなReliable Broadcastアルゴリズムを12,000の学習エピソードで生成できることが示唆された。
- 参考スコア(独自算出の注目度): 10.77039660100327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern distributed systems are supported by fault-tolerant algorithms, like
Reliable Broadcast and Consensus, that assure the correct operation of the
system even when some of the nodes of the system fail. However, the development
of distributed algorithms is a manual and complex process, resulting in
scientific papers that usually present a single algorithm or variations of
existing ones. To automate the process of developing such algorithms, this work
presents an intelligent agent that uses Reinforcement Learning to generate
correct and efficient fault-tolerant distributed algorithms. We show that our
approach is able to generate correct fault-tolerant Reliable Broadcast
algorithms with the same performance of others available in the literature, in
only 12,000 learning episodes.
- Abstract(参考訳): 現代の分散システムは、信頼性の高いブロードキャストやコンセンサスといったフォールトトレラントなアルゴリズムによってサポートされており、システムのいくつかのノードが故障しても、システムの正しい動作を保証する。
しかし、分散アルゴリズムの開発は手動で複雑なプロセスであり、通常は1つのアルゴリズムまたは既存のアルゴリズムのバリエーションを示す科学的論文をもたらす。
このようなアルゴリズムの開発プロセスを自動化するために、強化学習を用いて、正確で効率的なフォールトトレラントな分散アルゴリズムを生成するインテリジェントエージェントを提案する。
また,本手法により,文献で利用できるものと同等の性能で,フォールトトレラントなReliable Broadcastアルゴリズムを12,000の学習エピソードで生成できることを示す。
関連論文リスト
- A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
本研究では, 分散勾配降下アルゴリズムの挙動を, 敵対的腐敗の有無で解析する方法を示す。
汚職耐性の分散最適化アルゴリズムを設計するために、(怠慢な)ミラー降下からアイデアをどう使うかを示す。
MNISTデータセットの線形回帰、サポートベクトル分類、ソフトマックス分類に基づく実験は、我々の理論的知見を裏付けるものである。
論文 参考訳(メタデータ) (2024-07-19T08:29:12Z) - Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels [21.860440468189044]
Multi-Armed Bandit (MAB) システムはマルチエージェント分散環境におけるアプリケーションの増加を目撃している。
このような設定では、アクションを実行するエージェントと、意思決定を行う一次学習者とのコミュニケーションは、学習プロセスを妨げる可能性がある。
本研究では,学習者が異種行動消去チャネルをまたいで分散エージェントと並列に対話できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-21T19:21:19Z) - Measuring, Interpreting, and Improving Fairness of Algorithms using
Causal Inference and Randomized Experiments [8.62694928567939]
本稿では,アルゴリズム決定の公平性を測り,解釈し,改善するためのMIIFフレームワークを提案する。
ランダム化実験を用いてアルゴリズムバイアスを測定し, 異なる処理, 異なる影響, 経済的価値の同時測定を可能にする。
また、ブラックボックスアルゴリズムの信念を正確に解釈し、蒸留する、説明可能な機械学習モデルを開発した。
論文 参考訳(メタデータ) (2023-09-04T19:45:18Z) - The Clock and the Pizza: Two Stories in Mechanistic Explanation of
Neural Networks [59.26515696183751]
ニューラルネットワークにおけるアルゴリズム発見は、時としてより複雑であることを示す。
単純な学習問題でさえ、驚くほど多様なソリューションを許容できることが示されています。
論文 参考訳(メタデータ) (2023-06-30T17:59:13Z) - A Generalist Neural Algorithmic Learner [18.425083543441776]
我々は、幅広いアルゴリズムを実行することを学習できる単一のグラフニューラルネットワークプロセッサを構築している。
マルチタスク方式でアルゴリズムを効果的に学習できることを示す。
論文 参考訳(メタデータ) (2022-09-22T16:41:33Z) - Learning with Differentiable Algorithms [6.47243430672461]
この論文は、古典的なアルゴリズムとニューラルネットワークのような機械学習システムを組み合わせることを探求している。
この論文はアルゴリズムの監督という概念を定式化し、ニューラルネットワークがアルゴリズムから、あるいは、アルゴリズムと連動して学ぶことを可能にする。
さらに、この論文では、微分可能なソートネットワーク、微分可能なソートゲート、微分可能な論理ゲートネットワークなど、微分可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-01T17:30:00Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Identifying Co-Adaptation of Algorithmic and Implementational
Innovations in Deep Reinforcement Learning: A Taxonomy and Case Study of
Inference-based Algorithms [15.338931971492288]
我々は、アルゴリズムの革新と実装決定を分離するために、一連の推論に基づくアクター批判アルゴリズムに焦点を当てる。
実装の詳細がアルゴリズムの選択に一致すると、パフォーマンスが大幅に低下します。
結果は、どの実装の詳細がアルゴリズムと共適応され、共進化しているかを示す。
論文 参考訳(メタデータ) (2021-03-31T17:55:20Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
本稿では、強化学習(RL)と従来の運用研究(OR)アルゴリズムを組み合わせた2段階のフレームワークを開発する。
スケジューリング問題は,有限マルコフ決定過程 (MDP) と混合整数計画過程 (mixed-integer programming process) の2段階で解決される。
その結果,本アルゴリズムは,アジャイルな地球観測衛星スケジューリング問題に対して,安定かつ効率的に十分なスケジューリング計画を得ることができた。
論文 参考訳(メタデータ) (2021-03-10T03:16:12Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。