論文の概要: Safe Perception -- A Hierarchical Monitor Approach
- arxiv url: http://arxiv.org/abs/2208.00824v1
- Date: Mon, 1 Aug 2022 13:09:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-02 13:57:43.291148
- Title: Safe Perception -- A Hierarchical Monitor Approach
- Title(参考訳): セーフ・パーセプション - 階層的なモニターアプローチ
- Authors: Cornelius Buerkle, Fabian Oboril, Johannes Burr and Kay-Ulrich Scholl
- Abstract要約: 本稿では,AIに基づく認識システムのための新しい階層的モニタリング手法を提案する。
検出ミスを確実に検出でき、同時に誤報率も極めて低い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our transportation world is rapidly transforming induced by an ever
increasing level of autonomy. However, to obtain license of fully automated
vehicles for widespread public use, it is necessary to assure safety of the
entire system, which is still a challenge. This holds in particular for
AI-based perception systems that have to handle a diversity of environmental
conditions and road users, and at the same time should robustly detect all
safety relevant objects (i.e no detection misses should occur). Yet, limited
training and validation data make a proof of fault-free operation hardly
achievable, as the perception system might be exposed to new, yet unknown
objects or conditions on public roads. Hence, new safety approaches for
AI-based perception systems are required. For this reason we propose in this
paper a novel hierarchical monitoring approach that is able to validate the
object list from a primary perception system, can reliably detect detection
misses, and at the same time has a very low false alarm rate.
- Abstract(参考訳): 私たちの輸送の世界は、ますます高まる自律性によって急速に変化しています。
しかし, 公用車両の完全自動運転免許を取得するためには, システム全体の安全性を確保する必要があるため, 依然として課題である。
これは、環境条件と道路利用者の多様性を扱う必要があるAIベースの認識システムに特に当てはまり、同時に、すべての安全関連オブジェクトを堅牢に検出する必要がある(つまり、検出ミスは発生しない)。
しかし、限られたトレーニングと検証データは、認識システムが公道の新しい未知の物体や状況に晒される可能性があるため、障害のない運用の証明をほとんど達成できない。
したがって、AIに基づく知覚システムのための新しい安全性アプローチが必要である。
そこで本稿では,主認識システムからオブジェクトリストを検証し,検出ミスを確実に検出できるとともに,誤警報率も極めて低い,新しい階層的モニタリング手法を提案する。
関連論文リスト
- Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Detecting and Mitigating System-Level Anomalies of Vision-Based Controllers [7.095058159492494]
ビジョンベースのコントローラは、新規またはアウト・オブ・ディストリビューションの入力に直面したとき、誤った予測を行うことができる。
本研究では,そのような閉ループ,システムレベルの障害を検知・緩和する実行時異常モニタを提案する。
本提案手法は, 視覚に基づくタクシー制御システムを用いた自律型航空機タクシーシステムにおいて, 提案手法の有効性を検証したものである。
論文 参考訳(メタデータ) (2023-09-23T20:33:38Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Verifiable Obstacle Detection [10.277825331268179]
既存のLiDARに基づく古典的障害物検出アルゴリズムの安全性検証を行う。
本研究では,実世界のセンサデータに基づく実験結果を用いて,障害物検出システムの厳密な解析を行う。
論文 参考訳(メタデータ) (2022-08-30T17:15:35Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - An Empirical Analysis of the Use of Real-Time Reachability for the
Safety Assurance of Autonomous Vehicles [7.1169864450668845]
本稿では,1/10スケールのオープンソース自動運転車プラットフォームの安全性を確保するために,シンプルなアーキテクチャの実装にリアルタイムリーチビリティアルゴリズムを提案する。
提案手法では,システムの将来状態に対するコントローラの判断の影響に着目して,基盤となるコントローラを解析する必要性を抽象化する。
論文 参考訳(メタデータ) (2022-05-03T11:12:29Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
本稿では,MDFに基づくADシステムにおけるセキュリティ問題の最初の研究について述べる。
物理的に実現可能な逆3Dプリントオブジェクトを生成し、ADシステムが検出に失敗してクラッシュする。
以上の結果から,攻撃は様々なオブジェクトタイプおよびMSFに対して90%以上の成功率を達成した。
論文 参考訳(メタデータ) (2021-06-17T05:11:07Z) - Robustness Enhancement of Object Detection in Advanced Driver Assistance
Systems (ADAS) [0.0]
提案システムは、(1)最新鋭の物体検出器と対等な精度で性能が期待できる小型のワンステージ物体検出器と、(2)状況の意義から、自動運転車が人間の行動を必要とする場合には、警報信号をクラウドに送信するのに役立つ環境条件検出器の2つの主要コンポーネントを含む。
論文 参考訳(メタデータ) (2021-05-04T15:42:43Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
結果として得られる決定が摂動に対して堅牢であることは、最も重要なことです。
敵対的摂動は、意図的に環境や感覚測定の修正を施したものである。
より安全なシステムの構築とデプロイには,センサーシステムの脆弱性を慎重に評価する必要がある。
論文 参考訳(メタデータ) (2020-07-14T05:25:15Z) - A Survey of Algorithms for Black-Box Safety Validation of Cyber-Physical
Systems [30.638615396429536]
安全クリティカルな人工知能の普及により、この研究は、CPSの最先端の安全検証技術の調査を提供する。
本稿では,最適化,経路計画,強化学習,重要サンプリングの分野におけるアルゴリズムについて論じる。
自動運転車や航空機衝突回避システムなど、安全クリティカルな応用の概要を概説する。
論文 参考訳(メタデータ) (2020-05-06T17:31:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。