A Comprehensive Review on Computer Vision Analysis of Aerial Data
- URL: http://arxiv.org/abs/2402.09781v1
- Date: Thu, 15 Feb 2024 08:10:09 GMT
- Title: A Comprehensive Review on Computer Vision Analysis of Aerial Data
- Authors: Vivek Tetarwal, Sandeep Kumar
- Abstract summary: This paper reviews the computer vision tasks within the domain of aerial data analysis.
The paper provides the comparison of various hyper parameters employed across diverse architectures and tasks.
The paper thoroughly examines the challenges inherent in aerial data analysis, offering practical solutions.
- Score: 3.1537607776738605
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the emergence of new technologies in the field of airborne platforms and
imaging sensors, aerial data analysis is becoming very popular, capitalizing on
its advantages over land data. This paper presents a comprehensive review of
the computer vision tasks within the domain of aerial data analysis. While
addressing fundamental aspects such as object detection and tracking, the
primary focus is on pivotal tasks like change detection, object segmentation,
and scene-level analysis. The paper provides the comparison of various hyper
parameters employed across diverse architectures and tasks. A substantial
section is dedicated to an in-depth discussion on libraries, their
categorization, and their relevance to different domain expertise. The paper
encompasses aerial datasets, the architectural nuances adopted, and the
evaluation metrics associated with all the tasks in aerial data analysis.
Applications of computer vision tasks in aerial data across different domains
are explored, with case studies providing further insights. The paper
thoroughly examines the challenges inherent in aerial data analysis, offering
practical solutions. Additionally, unresolved issues of significance are
identified, paving the way for future research directions in the field of
aerial data analysis.
Related papers
- "Show Me What's Wrong!": Combining Charts and Text to Guide Data Analysis [4.016592757754338]
In the context of financial fraud detection, analysts must quickly identify suspicious activity among transactional data.
This is an iterative process made of complex exploratory tasks such as recognizing patterns, grouping, and comparing.
To mitigate the information overload inherent to these steps, we present a tool combining automated information highlights, Large Language Model generated textual insights, and visual analytics.
arXiv Detail & Related papers (2024-10-01T14:16:10Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - A Machine-Learning-Aided Visual Analysis Workflow for Investigating Air
Pollution Data [18.972547412113567]
Analyzing air pollution data is challenging as there are various analysis focuses from different aspects: feature (what), space (where), and time (when)
We develop a visual analytic system that supports a flexible analysis workflow, allowing domain experts to freely explore different aspects based on their analysis needs.
arXiv Detail & Related papers (2022-02-11T02:24:21Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
This paper provides a comprehensive overview of human-centric aerial surveillance tasks from a computer vision and pattern recognition perspective.
The main object of interest is humans, where single or multiple subjects are to be detected, identified, tracked, re-identified and have their behavior analyzed.
arXiv Detail & Related papers (2022-01-09T20:13:27Z) - Fine-Grained Image Analysis with Deep Learning: A Survey [146.22351342315233]
Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer vision and pattern recognition.
This paper attempts to re-define and broaden the field of FGIA by consolidating two fundamental fine-grained research areas -- fine-grained image recognition and fine-grained image retrieval.
arXiv Detail & Related papers (2021-11-11T09:43:56Z) - Automatic Gaze Analysis: A Survey of DeepLearning based Approaches [61.32686939754183]
Eye gaze analysis is an important research problem in the field of computer vision and Human-Computer Interaction.
There are several open questions including what are the important cues to interpret gaze direction in an unconstrained environment.
We review the progress across a range of gaze analysis tasks and applications to shed light on these fundamental questions.
arXiv Detail & Related papers (2021-08-12T00:30:39Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications.
Learning highly accurate models relies on the availability of datasets with a large number of annotated images.
Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images.
arXiv Detail & Related papers (2021-05-27T23:34:06Z) - Review of data analysis in vision inspection of power lines with an
in-depth discussion of deep learning technology [16.224505272448802]
The widespread popularity of unmanned aerial vehicles enables an immense amount of power lines inspection data to be collected.
How to employ massive inspection data especially the visible images to maintain the reliability, safety, and sustainability of power transmission is a pressing issue.
This paper conducts a thorough review of the current literature and identifies the challenges for future research.
arXiv Detail & Related papers (2020-03-22T04:09:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.