Duality theory for Clifford tensor powers
- URL: http://arxiv.org/abs/2208.01688v2
- Date: Sun, 03 Nov 2024 18:04:52 GMT
- Title: Duality theory for Clifford tensor powers
- Authors: Felipe Montealegre-Mora, David Gross,
- Abstract summary: The representation theory of the Clifford group is playing an increasingly prominent role in quantum information theory.
In this paper, we provide a unified framework for the duality approach that also covers qubit systems.
- Score: 0.7826806223782052
- License:
- Abstract: The representation theory of the Clifford group is playing an increasingly prominent role in quantum information theory, including in such diverse use cases as the construction of protocols for quantum system certification, quantum simulation, and quantum cryptography. In these applications, the tensor powers of the defining representation seem particularly important. The representation theory of these tensor powers is understood in two regimes. 1. For odd qudits in the case where the power t is not larger than the number of systems n: Here, a duality theory between the Clifford group and certain discrete orthogonal groups can be used to make fairly explicit statements about the occurring irreps (this theory is related to Howe duality and the eta-correspondence). 2. For qubits: Tensor powers up to t=4 have been analyzed on a case-by-case basis. In this paper, we provide a unified framework for the duality approach that also covers qubit systems. To this end, we translate the notion of rank of symplectic representations to representations of the qubit Clifford group, and generalize the eta correspondence between symplectic and orthogonal groups to a correspondence between the Clifford and certain orthogonal-stochastic groups. As a sample application, we provide a protocol to efficiently implement the complex conjugate of a black-box Clifford unitary evolution.
Related papers
- An explicit tensor notation for quantum computing [0.0]
This paper introduces a formalism that aims to describe the intricacies of quantum computation.
The focus is on providing a comprehensive representation of quantum states for multiple qubits and the quantum gates that manipulate them.
arXiv Detail & Related papers (2024-09-16T17:21:17Z) - Structural Stability Hypothesis of Dual Unitary Quantum Chaos [0.0]
spectral correlations over small enough energy scales are described by random matrix theory.
We consider fate of this property when moving from dual-unitary to generic quantum circuits.
arXiv Detail & Related papers (2024-02-29T12:25:29Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - A simple formulation of no-cloning and no-hiding that admits efficient
and robust verification [0.0]
Incompatibility is a feature of quantum theory that sets it apart from classical theory.
The no-hiding theorem is another such instance that arises in the context of the black-hole information paradox.
We formulate both of these fundamental features of quantum theory in a single form that is amenable to efficient verification.
arXiv Detail & Related papers (2023-03-05T12:48:11Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Biorthogonal resource theory of genuine quantum superposition [0.0]
We introduce a pseudo-Hermitian representation of the density operator, wherein its diagonal elements correspond to biorthogonal extensions of Kirkwood-Dirac quasi-probabilities.
This representation provides a unified framework for the inter-basis quantum superposition and basis state indistinguishability, giving rise to what we term as textitgenuine quantum superposition.
arXiv Detail & Related papers (2022-10-05T17:17:37Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Quantum networks theory [0.0]
The formalism of quantum theory over discrete systems is extended in two significant ways.
tensors and traceouts are generalized, so that systems can be partitioned according to almost arbitrary logical predicates.
The interrelations between the notions of unitarity, complete positivity, trace-preservation, non-signalling causality, locality and localizability that are standard in quantum theory be jeopardized as the neighbourhood and partitioning between systems become both quantum, dynamical, and logical.
arXiv Detail & Related papers (2021-10-20T14:29:47Z) - Relevant OTOC operators: footprints of the classical dynamics [68.8204255655161]
The OTOC-RE theorem relates the OTOCs summed over a complete base of operators to the second Renyi entropy.
We show that the sum over a small set of relevant operators, is enough in order to obtain a very good approximation for the entropy.
In turn, this provides with an alternative natural indicator of complexity, i.e. the scaling of the number of relevant operators with time.
arXiv Detail & Related papers (2020-07-31T19:23:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.