論文の概要: Cross-lingual Approaches for the Detection of Adverse Drug Reactions in
German from a Patient's Perspective
- arxiv url: http://arxiv.org/abs/2208.02031v1
- Date: Wed, 3 Aug 2022 12:52:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-04 13:11:20.554774
- Title: Cross-lingual Approaches for the Detection of Adverse Drug Reactions in
German from a Patient's Perspective
- Title(参考訳): 患者から見たドイツ語の逆薬物反応検出のための言語横断的アプローチ
- Authors: Lisa Raithel, Philippe Thomas, Roland Roller, Oliver Sapina, Sebastian
M\"oller, Pierre Zweigenbaum
- Abstract要約: 患者生成内容におけるドイツ逆薬物反応検出のための最初のコーパスを提示する。
データはドイツの患者フォーラムから4,169件の注釈付き文書から成っている。
- 参考スコア(独自算出の注目度): 3.8233498951276403
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this work, we present the first corpus for German Adverse Drug Reaction
(ADR) detection in patient-generated content. The data consists of 4,169 binary
annotated documents from a German patient forum, where users talk about health
issues and get advice from medical doctors. As is common in social media data
in this domain, the class labels of the corpus are very imbalanced. This and a
high topic imbalance make it a very challenging dataset, since often, the same
symptom can have several causes and is not always related to a medication
intake. We aim to encourage further multi-lingual efforts in the domain of ADR
detection and provide preliminary experiments for binary classification using
different methods of zero- and few-shot learning based on a multi-lingual
model. When fine-tuning XLM-RoBERTa first on English patient forum data and
then on the new German data, we achieve an F1-score of 37.52 for the positive
class. We make the dataset and models publicly available for the community.
- Abstract(参考訳): 本研究では,患者生成コンテンツ中のドイツ逆薬物反応(ADR)検出のための最初のコーパスを提示する。
データはドイツの患者フォーラムから4,169件の注釈付き文書からなり、ユーザーは健康問題について話し、医師からアドバイスを受ける。
このドメインのソーシャルメディアデータでよく見られるように、コーパスのクラスラベルは非常に不均衡である。
これと高い話題の不均衡は、しばしば同じ症状がいくつかの原因を持ち、常に薬物摂取と関連しているとは限らないため、非常に難しいデータセットである。
我々は、ADR検出領域におけるさらなる多言語的取り組みを奨励し、多言語モデルに基づくゼロおよび少数ショット学習の異なる手法を用いてバイナリ分類のための予備実験を行う。
XLM-RoBERTaを英語の患者フォーラムデータとドイツ語のデータに基づいて微調整すると、正のクラスで37.52のF1スコアが得られる。
データセットとモデルをコミュニティ向けに公開しています。
関連論文リスト
- Towards Fairer Health Recommendations: finding informative unbiased samples via Word Sense Disambiguation [3.328297368052458]
LLMを含むNLPモデルを用いて,医療カリキュラムのバイアス検出に取り組む。
大規模コーパスからの偏見を医学専門家が注釈した4,105点の抜粋を含む金標準データセットで評価した。
論文 参考訳(メタデータ) (2024-09-11T17:10:20Z) - A Dataset for Pharmacovigilance in German, French, and Japanese: Annotating Adverse Drug Reactions across Languages [17.40961028505384]
本研究は, 患者フォーラム, ソーシャルメディア, 臨床報告, ドイツ語, フランス語, 日本語など, さまざまなソースから収集した副薬物反応に関する多言語コーパスを提示する。
これは、医療のための現実の多言語言語モデルの開発に貢献する。
論文 参考訳(メタデータ) (2024-03-27T08:21:01Z) - Semantic Coherence Markers for the Early Diagnosis of the Alzheimer
Disease [0.0]
パープレキシティはもともと、与えられた言語モデルがテキストシーケンスを予測するのにどの程度適しているかを評価するための情報理論の尺度として考え出された。
我々は2グラムから5グラムまでのN-gramとトランスフォーマーベース言語モデルであるGPT-2を多種多様な言語モデルに適用した。
ベストパフォーマンスモデルでは、ADクラスと制御対象の両方から対象を分類する際に、完全精度とFスコア(精度/特異度とリコール/感度のそれぞれ1.00)を達成した。
論文 参考訳(メタデータ) (2023-02-02T11:40:16Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
事前学習型言語モデル (LM) は低リソース環境下での言語間移動に大きな可能性を示している。
脳卒中におけるコードミキシング(スペイン・カタラン)臨床ノートの低リソース・実世界の課題を解決するために,NER (name recognition) のためのLMの多言語間転写特性を示す。
論文 参考訳(メタデータ) (2022-04-10T21:46:52Z) - RuMedBench: A Russian Medical Language Understanding Benchmark [58.99199480170909]
本稿では,複数のタスクタイプをカバーするオープンなロシア語医療言語理解ベンチマークについて述べる。
我々は、新しいタスクのための統一されたフォーマットラベリング、データ分割、評価メトリクスを作成します。
シングルナンバーメトリックは、ベンチマークに対処するモデルの能力を表す。
論文 参考訳(メタデータ) (2022-01-17T16:23:33Z) - GERNERMED -- An Open German Medical NER Model [0.7310043452300736]
医療データ分析の分野でのデータマイニングは、関連するデータを取得するために、構造化されていないデータの処理にのみ依存する必要があることが多い。
本研究では,ドイツのテキストデータにおける医学的実体型を検出するためのNERタスクのための,最初のオープンなニューラルNLPモデルであるGERNERMEDを提案する。
論文 参考訳(メタデータ) (2021-09-24T17:53:47Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
中国初のバイオメディカル言語理解評価ベンチマークを提示する。
名前付きエンティティ認識、情報抽出、臨床診断正規化、単文/文対分類を含む自然言語理解タスクのコレクションである。
本研究は,現在の11種類の中国モデルによる実験結果について報告し,その実験結果から,現在最先端のニューラルモデルがヒトの天井よりもはるかに悪い性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-15T12:25:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z) - DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment
Prediction [67.91606509226132]
臨床試験は医薬品開発に不可欠であるが、高価で不正確で不十分な患者募集に苦しむことが多い。
DeepEnrollは、入力基準(タブラリデータ)を一致する推論のための共有潜在空間に共同でエンコードする、クロスモーダル推論学習モデルである。
論文 参考訳(メタデータ) (2020-01-22T17:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。