Entanglement spectrum and entropy in Floquet topological matter
- URL: http://arxiv.org/abs/2208.02075v3
- Date: Tue, 6 Dec 2022 01:41:20 GMT
- Title: Entanglement spectrum and entropy in Floquet topological matter
- Authors: Longwen Zhou
- Abstract summary: Entanglement is one of the most fundamental features of quantum systems.
Topological winding and Chern numbers are introduced to characterize the entanglement spectrum and eigenmodes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement is one of the most fundamental features of quantum systems. In
this work, we obtain the entanglement spectrum and entropy of Floquet
noninteracting fermionic lattice models and build their connections with
Floquet topological phases. Topological winding and Chern numbers are
introduced to characterize the entanglement spectrum and eigenmodes.
Correspondences between the spectrum and topology of entanglement Hamiltonians
under periodic boundary conditions and topological edge states under open
boundary conditions are further established. The theory is applied to Floquet
topological insulators in different symmetry classes and spatial dimensions.
Our work thus provides a useful framework for the study of rich entanglement
patterns in Floquet topological matter.
Related papers
- Gapless higher-order topology and corner states in Floquet systems [3.40981020092183]
We analytically characterize and numerically demonstrate the zero and $pi$ corner modes that could emerge at the critical points between different Floquet HOTPs.
Our work reveals the possibility of corner modes surviving topological transitions in Floquet systems.
arXiv Detail & Related papers (2025-01-14T14:45:07Z) - Topological edge states at Floquet quantum criticality [0.0]
Topologically protected edge states exactly at topological phase boundaries challenge the conventional belief that topological states must be associated with a bulk energy gap.
Because periodically driven (Floquet) systems host unusually intricate topological phase boundaries, topological edge states can be prolific at such Floquet quantum criticality.
arXiv Detail & Related papers (2024-10-20T14:06:02Z) - Quantum geometry and geometric entanglement entropy of one-dimensional Floquet topological matter [0.0]
We reveal the quantum geometry and the associated entanglement entropy of Floquet topological states in one-dimensional periodically driven systems.
The quantum metric tensors of Floquet states are found to show non-analytic signatures at topological phase transition points.
Our findings uncover the rich quantum geometries of Floquet states, unveiling the geometric origin of EE for gapped Floquet topological phases.
arXiv Detail & Related papers (2024-08-10T11:44:06Z) - Topological holography for fermions [2.064157605420738]
Topological holography is conjectured to capture the topological aspects of symmetry in gapped and gapless systems.
We extend the SymTFT framework to establish a topological holography correspondence for fermionic systems.
arXiv Detail & Related papers (2024-04-29T18:00:02Z) - Floquet topological superconductors with many Majorana edge modes:
topological invariants, entanglement spectrum and bulk-edge correspondence [0.0]
One-dimensional Floquet topological superconductors possess two types of degenerate Majorana edge modes at zero and $pi$ quasieneriges.
We discover Floquet superconducting phases with large topological invariants and arbitrarily many Majorana edge modes in periodically driven Kitaev chains.
arXiv Detail & Related papers (2023-03-08T15:52:20Z) - Nonperturbative Casimir effects: Vacuum structure, Confinement, and
Chiral Symmetry Breaking [91.3755431537592]
We consider phase properties of confining gauge theories and strongly interacting fermion systems.
In particular, the chiral and deconfinement phase transitions properties in the presence of Casimir plates.
arXiv Detail & Related papers (2022-08-06T07:39:36Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.