$2+1$ dimensional Floquet systems and lattice fermions: Exact bulk spectral equivalence
- URL: http://arxiv.org/abs/2410.18226v1
- Date: Wed, 23 Oct 2024 19:09:01 GMT
- Title: $2+1$ dimensional Floquet systems and lattice fermions: Exact bulk spectral equivalence
- Authors: Thomas Iadecola, Srimoyee Sen, Lars Sivertsen,
- Abstract summary: A connection has been proposed between periodically driven systems known as Floquet insulators in continuous time and static fermion theories in discrete time.
Here we investigate the potential of static discrete-time theories to capture Floquet physics in higher dimensions.
- Score: 0.0
- License:
- Abstract: A connection has recently been proposed between periodically driven systems known as Floquet insulators in continuous time and static fermion theories in discrete time. This connection has been established in a $(1+1)$-dimensional free theory, where an explicit mapping between the spectra of a Floquet insulator and a discrete-time Dirac fermion theory has been formulated. Here we investigate the potential of static discrete-time theories to capture Floquet physics in higher dimensions, where so-called anomalous Floquet topological insulators can emerge that feature chiral edge states despite having bulk bands with zero Chern number. Starting from a particular model of an anomalous Floquet system, we provide an example of a static discrete-time theory whose bulk spectrum is an exact analytic match for the Floquet spectrum. The spectra with open boundary conditions in a particular strip geometry also match up to finite-size corrections. However, the models differ in several important respects. The discrete-time theory is spatially anisotropic, so that the spectra do not agree for all lattice terminations, e.g. other strip geometries or on half spaces. This difference can be attributed to the fact that the static discrete-time model is quasi-one-dimensional in nature and therefore has a different bulk-boundary correspondence than the Floquet model.
Related papers
- Geometric Floquet theory [0.0]
We derive Floquet theory from quantum geometry.
We show that the geometric contribution to the evolution accounts for inherently nonequilibrium effects.
This work directly bridges seemingly unrelated areas of nonequilibrium physics.
arXiv Detail & Related papers (2024-10-09T16:12:15Z) - Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator [49.1574468325115]
We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the specific case of an atomic condensate.
We first describe the quantization of the Nambu-Goldstone (NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian.
We extend the formalism to Floquet states simultaneously breaking several symmetries, where Goldstone theorem translates into the emergence of Floquet-Nambu-Goldstone modes with zero quasi-energy.
arXiv Detail & Related papers (2024-02-16T16:06:08Z) - Floquet insulators and lattice fermions beyond naive time discretization [0.0]
Floquet insulators can host topologically protected bound states that exhibit response at half the frequency of the drive.
Such states can also appear in undriven lattice field theories when time is discretized as a result of fermion doubling.
We show that spectral features characteristic of beyond-equilibrium physics in Floquet systems can be replicated in static systems with appropriate time discretization.
arXiv Detail & Related papers (2023-11-09T19:00:04Z) - Floquet insulators and lattice fermions [0.0]
Floquet insulators are periodically driven quantum systems that can host novel topological phases as a function of the drive parameters.
We make this suggestion concrete by mapping the spectrum of a noninteracting (1+1)D Floquet insulator for certain drive parameters onto that of a discrete-time lattice fermion theory with a time-independent Hamiltonian.
arXiv Detail & Related papers (2023-06-28T18:00:05Z) - Engineering, control and longitudinal readout of Floquet qubits [105.9098786966493]
Time-periodic Hamiltonians can be exploited to increase the dephasing time of qubits and to design protected one and two-qubit gates.
Here, we use the framework of many-mode Floquet theory to describe approaches to robustly control Floquet qubits in the presence of multiple drive tones.
Following the same approach, we introduce a longitudinal readout protocol to measure the Floquet qubit without the need of first adiabatically mapping back the Floquet states to the static qubit states.
arXiv Detail & Related papers (2021-08-25T14:35:02Z) - Fano interference in quantum resonances from angle-resolved elastic
scattering [62.997667081978825]
We show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles in a single channel shape resonance.
We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules.
arXiv Detail & Related papers (2021-05-12T20:41:25Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Theory of Anomalous Floquet Higher-Order Topology: Classification,
Characterization, and Bulk-Boundary Correspondence [1.9087335681007476]
We provide a framework to understand anomalous Floquet higher-order topological insulators (AFHOTIs)
Such AFHOTIs are defined by their robust, symmetry-protected corner modes pinned at special quasienergies.
The corner-mode physics of an AFHOTI is found to be generically indicated by 3D Dirac/Weyl-like topological singularities.
arXiv Detail & Related papers (2020-10-15T18:00:01Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Universal presence of time-crystalline phases and period-doubling
oscillations in one-dimensional Floquet topological insulators [2.3978553352626064]
We report a ubiquitous presence of topological Floquet time crystal (TFTC) in one-dimensional periodically-driven systems.
Our modeling of the time-crystalline 'ground state' can be easily realized in experimental platforms such as topological photonics and ultracold fields.
arXiv Detail & Related papers (2020-05-08T09:20:57Z) - Tensor network models of AdS/qCFT [69.6561021616688]
We introduce the notion of a quasiperiodic conformal field theory (qCFT)
We show that qCFT can be best understood as belonging to a paradigm of discrete holography.
arXiv Detail & Related papers (2020-04-08T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.