Optimizing Counterdiabaticity by Variational Quantum Circuits
- URL: http://arxiv.org/abs/2208.02087v1
- Date: Wed, 3 Aug 2022 14:12:26 GMT
- Title: Optimizing Counterdiabaticity by Variational Quantum Circuits
- Authors: Dan Sun, Pranav Chandarana, Zi-Hua Xin, and Xi Chen
- Abstract summary: We propose a technique of finding optimal coefficients of the CD terms using a variational quantum circuit.
By classical optimizations routines, the parameters of this circuit are optimized to provide the coefficients corresponding to the CD terms.
Their improved performance is exemplified in Greenberger-Horne-Zeilinger state preparation on nearest-neighbor Ising model.
- Score: 3.4092751295027997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Utilizing counterdiabatic (CD) driving - aiming at suppression of diabatic
transition - in digitized adiabatic evolution have garnered immense interest in
quantum protocols and algorithms. However, improving the approximate CD terms
with a nested commutator ansatz is a challenging task. In this work, we propose
a technique of finding optimal coefficients of the CD terms using a variational
quantum circuit. By classical optimizations routines, the parameters of this
circuit are optimized to provide the coefficients corresponding to the CD
terms. Then their improved performance is exemplified in
Greenberger-Horne-Zeilinger state preparation on nearest-neighbor Ising model.
Finally, we also show the advantage over the usual quantum approximation
optimization algorithm, in terms of fidelity with bounded time.
Related papers
- Optimization by Decoded Quantum Interferometry [43.55132675053983]
We introduce a quantum algorithm for reducing classical optimization problems to classical decoding problems.
We show that DQI achieves a better approximation ratio than any quantum-time classical algorithm known to us.
arXiv Detail & Related papers (2024-08-15T17:47:42Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
We develop AlphaTensor-Quantum, a method to minimize the number of T gates that are needed to implement a given circuit.
Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets.
Remarkably, it discovers an efficient algorithm akin to Karatsuba's method for multiplication in finite fields.
arXiv Detail & Related papers (2024-02-22T09:20:54Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Bayesian Optimization for QAOA [0.0]
We present a Bayesian optimization procedure to optimise a quantum circuit.
We show that our approach allows for a significant reduction in the number of calls to the quantum circuit.
Our results suggest that the method proposed here is a promising framework to leverage the hybrid nature of QAOA on the noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2022-09-08T13:59:47Z) - Accelerated Convergence of Contracted Quantum Eigensolvers through a
Quasi-Second-Order, Locally Parameterized Optimization [0.0]
A contracted quantum eigensolver (CQE) finds a solution to the many-electron Schr"odinger equation on a quantum computer.
In this work, we accelerate the convergence of the CQE and its wavefunction ansatz via tools from classical optimization theory.
arXiv Detail & Related papers (2022-05-03T18:48:04Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Digitized-counterdiabatic quantum approximate optimization algorithm [3.0638256603183054]
We propose a digitized version of QAOA enhanced via the use of shortcuts to adiabaticity.
We apply our digitized-counterdiabatic QAOA to Ising models, classical optimization problems, and the P-spin model, demonstrating that it outperforms standard QAOA in all cases.
arXiv Detail & Related papers (2021-07-06T17:57:32Z) - Behavior of Analog Quantum Algorithms [0.0]
We show that different analog quantum algorithms can emulate the optimal protocol under different limits and approximations.
We present a new algorithm for better approximating the optimal protocol using the analytic and numeric insights from the rest of the paper.
arXiv Detail & Related papers (2021-07-02T18:00:07Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.