Active Learning on a Programmable Photonic Quantum Processor
- URL: http://arxiv.org/abs/2208.02104v1
- Date: Wed, 3 Aug 2022 14:34:12 GMT
- Title: Active Learning on a Programmable Photonic Quantum Processor
- Authors: Chen Ding, Xiao-Yue Xu, Yun-Fei Niu, Shuo Zhang, Wan-Su Bao, He-Liang
Huang
- Abstract summary: Training a quantum machine learning model requires a large labeled dataset, which incurs high labeling and computational costs.
To reduce such costs, a selective training strategy, called active learning (AL), chooses only a subset of the original dataset to learn.
Here, we design and implement two AL-enpowered variational quantum classifiers, to investigate the potential applications and effectiveness of AL in quantum machine learning.
- Score: 6.762439942352232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training a quantum machine learning model generally requires a large labeled
dataset, which incurs high labeling and computational costs. To reduce such
costs, a selective training strategy, called active learning (AL), chooses only
a subset of the original dataset to learn while maintaining the trained model's
performance. Here, we design and implement two AL-enpowered variational quantum
classifiers, to investigate the potential applications and effectiveness of AL
in quantum machine learning. Firstly, we build a programmable free-space
photonic quantum processor, which enables the programmed implementation of
various hybrid quantum-classical computing algorithms. Then, we code the
designed variational quantum classifier with AL into the quantum processor, and
execute comparative tests for the classifiers with and without the AL strategy.
The results validate the great advantage of AL in quantum machine learning, as
it saves at most $85\%$ labeling efforts and $91.6\%$ percent computational
efforts compared to the training without AL on a data classification task. Our
results inspire AL's further applications in large-scale quantum machine
learning to drastically reduce training data and speed up training,
underpinning the exploration of practical quantum advantages in quantum physics
or real-world applications.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Quantum Resonant Dimensionality Reduction and Its Application in Quantum Machine Learning [2.7119354495508787]
We propose a quantum resonant dimension reduction (QRDR) algorithm based on the quantum resonant transition to reduce the dimension of input data.
After QRDR, the dimension of input data $N$ can be reduced into desired scale $R$, and the effective information of the original data will be preserved.
Our algorithm has the potential to be utilized in a variety of computing fields.
arXiv Detail & Related papers (2024-05-21T09:26:18Z) - Strategic Data Re-Uploads: A Pathway to Improved Quantum Classification Data Re-Uploading Strategies for Improved Quantum Classifier Performance [0.0]
Re-uploading classical information into quantum states multiple times can enhance the accuracy of quantum classifiers.
We demonstrate our approach to two classification patterns: a linear classification pattern (LCP) and a non-linear classification pattern (NLCP)
arXiv Detail & Related papers (2024-05-15T14:28:00Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.