Quantum ensemble learning with a programmable superconducting processor
- URL: http://arxiv.org/abs/2503.11047v1
- Date: Fri, 14 Mar 2025 03:30:34 GMT
- Title: Quantum ensemble learning with a programmable superconducting processor
- Authors: Jiachen Chen, Yaozu Wu, Zhen Yang, Shibo Xu, Xuan Ye, Daili Li, Ke Wang, Chuanyu Zhang, Feitong Jin, Xuhao Zhu, Yu Gao, Ziqi Tan, Zhengyi Cui, Aosai Zhang, Ning Wang, Yiren Zou, Tingting Li, Fanhao Shen, Jiarun Zhong, Zehang Bao, Zitian Zhu, Zixuan Song, Jinfeng Deng, Hang Dong, Pengfei Zhang, Wei Zhang, Hekang Li, Qiujiang Guo, Zhen Wang, Ying Li, Xiaoting Wang, Chao Song, H. Wang,
- Abstract summary: We introduce AdaBoost.Q, a quantum adaptation of the classical adaptive boosting (AdaBoost) algorithm.<n>We experimentally demonstrate the versatility of our approach on a programmable superconducting processor.<n>We achieve an accuracy above 86% for a ten-class classification task over 10,000 test samples, and an accuracy of 100% for a quantum feature recognition task over 1,564 test samples.
- Score: 21.725285453891022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning is among the most exciting potential applications of quantum computing. However, the vulnerability of quantum information to environmental noises and the consequent high cost for realizing fault tolerance has impeded the quantum models from learning complex datasets. Here, we introduce AdaBoost.Q, a quantum adaptation of the classical adaptive boosting (AdaBoost) algorithm designed to enhance learning capabilities of quantum classifiers. Based on the probabilistic nature of quantum measurement, the algorithm improves the prediction accuracy by refining the attention mechanism during the adaptive training and combination of quantum classifiers. We experimentally demonstrate the versatility of our approach on a programmable superconducting processor, where we observe notable performance enhancements across various quantum machine learning models, including quantum neural networks and quantum convolutional neural networks. With AdaBoost.Q, we achieve an accuracy above 86% for a ten-class classification task over 10,000 test samples, and an accuracy of 100% for a quantum feature recognition task over 1,564 test samples. Our results demonstrate a foundational tool for advancing quantum machine learning towards practical applications, which has broad applicability to both the current noisy and the future fault-tolerant quantum devices.
Related papers
- Hamiltonian Dynamics Learning: A Scalable Approach to Quantum Process Characterization [6.741097425426473]
We introduce an efficient quantum process learning method specifically designed for short-time Hamiltonian dynamics.
We demonstrate applications in quantum machine learning, where our protocol enables efficient training of variational quantum neural networks by directly learning unitary transformations.
This work establishes a new theoretical foundation for practical quantum dynamics learning, paving the way for scalable quantum process characterization in both near-term and fault-tolerant quantum computing.
arXiv Detail & Related papers (2025-03-31T14:50:00Z) - Quantum autoencoders for image classification [0.0]
Quantum autoencoders (QAEs) leverage classical optimization solely for parameter tuning.<n>QAEs can serve as efficient classification models with fewer parameters and highlight the potential of utilizing quantum circuits for complete end-to-end learning.
arXiv Detail & Related papers (2025-02-21T07:13:38Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Supervised Learning Guarantee for Quantum AdaBoost [7.473180902609473]
In the noisy intermediate-scale quantum (NISQ) era, variational quantum algorithms are constrained due to a limited number of qubits and the shallow depth of quantum circuits.
In this paper, we theoretically establish and numerically verify a learning guarantee for quantum adaptive boosting (AdaBoost)
Our work indicates that in the current NISQ era, introducing appropriate ensemble methods is particularly valuable in improving the performance of quantum machine learning algorithms.
arXiv Detail & Related papers (2024-02-04T07:18:44Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Experimental quantum adversarial learning with programmable
superconducting qubits [15.24718195264974]
We show the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits.
Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios.
arXiv Detail & Related papers (2022-04-04T18:00:00Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.