論文の概要: Machine learning optimization of Majorana hybrid nanowires
- arxiv url: http://arxiv.org/abs/2208.02182v1
- Date: Wed, 3 Aug 2022 16:13:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-04 13:02:23.583804
- Title: Machine learning optimization of Majorana hybrid nanowires
- Title(参考訳): majoranaハイブリッドナノワイヤの機械学習最適化
- Authors: Matthias Thamm and Bernd Rosenow
- Abstract要約: CMA-ESアルゴリズムを用いた機械学習によるゲートアレイのチューニングについて,強い障害を有するマヨラナワイヤのケーススタディとして検討する。
このアルゴリズムは、トポロジカルなシグネチャを効率的に改善し、固有の障害プロファイルを学習し、障害効果を完全に排除できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the complexity of quantum systems such as quantum bit arrays increases,
efforts to automate expensive tuning are increasingly worthwhile. We
investigate machine learning based tuning of gate arrays using the CMA-ES
algorithm for the case study of Majorana wires with strong disorder. We find
that the algorithm is able to efficiently improve the topological signatures,
learn intrinsic disorder profiles, and completely eliminate disorder effects.
For example, with only 20 gates, it is possible to fully recover Majorana zero
modes destroyed by disorder by optimizing gate voltages.
- Abstract(参考訳): 量子ビット配列のような量子システムの複雑さが増大するにつれて、高価なチューニングを自動化する努力はますます価値が増している。
CMA-ESアルゴリズムを用いた機械学習によるゲートアレイのチューニングについて,強い障害を有するマヨラナワイヤのケーススタディとして検討する。
このアルゴリズムは、トポロジカルなシグネチャを効率的に改善し、固有の障害プロファイルを学習し、障害効果を完全に排除できる。
例えば、ゲートが20個しかない場合、ゲート電圧を最適化することで、障害によって破壊されるマヨラナゼロモードを完全に回復することができる。
関連論文リスト
- High Precision Fault-Tolerant Quantum Circuit Synthesis by Diagonalization using Reinforcement Learning [0.8341988468339112]
経験的探索に基づく合成法は、より広範なユニタリの集合に対して優れた実装を生成することができる。
探索に基づく手法を用いて、一般ユニタリ合成問題を対角ユニタリの1つに還元する。
将来の長期的応用のためのアルゴリズムのサブセットでは、対角化はTゲートの数を最大16.8%減らすことができる。
論文 参考訳(メタデータ) (2024-08-31T12:10:32Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
我々は,所定の回路を実装するために必要なTゲート数を最小化する手法であるAlphaTensor-Quantumを開発した。
Tカウント最適化の既存の方法とは異なり、AlphaTensor-Quantumは量子計算に関するドメイン固有の知識を取り入れ、ガジェットを活用することができる。
注目すべきは、有限体における乗法であるカラツバの手法に似た効率的なアルゴリズムを発見することである。
論文 参考訳(メタデータ) (2024-02-22T09:20:54Z) - Machine-learning-inspired quantum optimal control of nonadiabatic
geometric quantum computation via reverse engineering [3.3216171033358077]
制御パラメータを最適化するために,平均忠実度に基づく機械学習に基づく有望な手法を提案する。
逆工学による一量子ゲートをキャット状態の非断熱的幾何量子計算により実装する。
ニューラルネットワークがモデル空間を拡張する能力を持っていることを実証する。
論文 参考訳(メタデータ) (2023-09-28T14:36:26Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
量子ゲート理論の基本的な前提は、量子ゲートはフォールトトレランスの誤差閾値を超えることなく、大きなプロセッサにスケールできるということである。
ここでは、このような問題を克服できる戦略について報告する。
我々は、68個の周波数可変ビットの周波数軌跡をコレオグラフィーして、超伝導エラー中に単一量子ビットを実行することを示した。
論文 参考訳(メタデータ) (2023-08-04T13:39:46Z) - Hybrid discrete-continuous compilation of trapped-ion quantum circuits with deep reinforcement learning [1.7087507417780985]
我々は、トラップイオンコンピューティングにおいて、関連する量子回路のサイズを大幅に削減できることを示す。
私たちのフレームワークは、未知のユニタリプロセスの再生を目標とする実験的な設定にも適用できます。
論文 参考訳(メタデータ) (2023-07-12T14:55:28Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
正確な数値と摂動解析手法を用いて効率的にゲートパラメータを抽出する方法を示す。
我々は,$i$SWAP, Control-Z, CNOT など,異なる種類のゲートに対する最適操作条件を同定する。
論文 参考訳(メタデータ) (2021-07-06T02:02:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
量子プロセッサは、ハードウェアに固有のものではないダイナミクスを効率的にシミュレートするためにプログラムできることを示す。
誤差補正のないノイズのあるデバイスでは、モジュールゲートを用いて量子プログラムをコンパイルするとシミュレーション結果が大幅に改善されることを示す。
論文 参考訳(メタデータ) (2020-04-15T05:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。