論文の概要: Optimizing quantum gates towards the scale of logical qubits
- arxiv url: http://arxiv.org/abs/2308.02321v3
- Date: Tue, 9 Jan 2024 20:29:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-11 17:16:25.152449
- Title: Optimizing quantum gates towards the scale of logical qubits
- Title(参考訳): 量子ゲートの論理量子ビットスケールへの最適化
- Authors: Paul V. Klimov, Andreas Bengtsson, Chris Quintana, Alexandre Bourassa,
Sabrina Hong, Andrew Dunsworth, Kevin J. Satzinger, William P. Livingston,
Volodymyr Sivak, Murphy Y. Niu, Trond I. Andersen, Yaxing Zhang, Desmond
Chik, Zijun Chen, Charles Neill, Catherine Erickson, Alejandro Grajales Dau,
Anthony Megrant, Pedram Roushan, Alexander N. Korotkov, Julian Kelly, Vadim
Smelyanskiy, Yu Chen, Hartmut Neven
- Abstract要約: 量子ゲート理論の基本的な前提は、量子ゲートはフォールトトレランスの誤差閾値を超えることなく、大きなプロセッサにスケールできるということである。
ここでは、このような問題を克服できる戦略について報告する。
我々は、68個の周波数可変ビットの周波数軌跡をコレオグラフィーして、超伝導エラー中に単一量子ビットを実行することを示した。
- 参考スコア(独自算出の注目度): 78.55133994211627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A foundational assumption of quantum error correction theory is that quantum
gates can be scaled to large processors without exceeding the error-threshold
for fault tolerance. Two major challenges that could become fundamental
roadblocks are manufacturing high performance quantum hardware and engineering
a control system that can reach its performance limits. The control challenge
of scaling quantum gates from small to large processors without degrading
performance often maps to non-convex, high-constraint, and time-dependent
control optimization over an exponentially expanding configuration space. Here
we report on a control optimization strategy that can scalably overcome the
complexity of such problems. We demonstrate it by choreographing the frequency
trajectories of 68 frequency-tunable superconducting qubits to execute single-
and two-qubit gates while mitigating computational errors. When combined with a
comprehensive model of physical errors across our processor, the strategy
suppresses physical error rates by $\sim3.7\times$ compared with the case of no
optimization. Furthermore, it is projected to achieve a similar performance
advantage on a distance-23 surface code logical qubit with 1057 physical
qubits. Our control optimization strategy solves a generic scaling challenge in
a way that can be adapted to a variety of quantum operations, algorithms, and
computing architectures.
- Abstract(参考訳): 量子誤差補正理論の基本的な仮定は、フォールトトレランスの誤りを克服することなく、量子ゲートを大きなプロセッサにスケールできるということである。
基本的な障害となる可能性のある2つの大きな課題は、高性能量子ハードウェアの製造と、その性能限界に達する制御システムの構築である。
性能を劣化させることなく小型から大規模プロセッサに量子ゲートをスケールするという制御課題は、指数関数的に拡張された構成空間上での非凸、高制約、時間依存的な制御最適化にマップされることが多い。
本稿では,このような問題の複雑さを克服する制御最適化戦略について報告する。
本研究では、68個の周波数可変超伝導量子ビットの周波数軌跡を振り返り、計算誤差を軽減しつつシングルおよびツーキュービットゲートを実行することを実証する。
プロセッサ全体の物理的エラーの包括的なモデルと組み合わせると、最適化しない場合と比較して、この戦略は物理的エラー率を$\sim3.7\times$で抑えます。
さらに、1057の物理キュービットを持つ distance-23 表面コード論理キュービットでも同様の性能の利点が得られると予測されている。
当社の制御最適化戦略は、さまざまな量子演算、アルゴリズム、コンピューティングアーキテクチャに適用可能な方法で、一般的なスケーリング課題を解決します。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
この研究は、量子回路のコンパイルマッピング問題における臨界サブルーチンとして、マルチキュービットパスフィンディングに焦点を当てている。
本稿では,回路SWAPゲート深さに対して量子ハードウェア上で量子ビットを最適にナビゲートする二進整数線形計画法を用いてモデル化したアルゴリズムを提案する。
我々は、様々な量子ハードウェアレイアウトのアルゴリズムをベンチマークし、計算ランタイム、解SWAP深さ、累積SWAPゲート誤差率などの特性を評価した。
論文 参考訳(メタデータ) (2024-05-29T05:59:15Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Hardness of braided quantum circuit optimization in the surface code [0.1759008116536278]
大規模量子情報処理では、量子デバイスにおけるノイズの影響を軽減するために、量子エラー符号を使用する必要がある。
表面符号のような位相的誤り訂正符号は、2次元の物理量子ビット配列における局所的相互作用のみを用いて実装できるので、有望な候補である。
しかし、誤り訂正には時間的オーバーヘッド、物理量子ビットの数、物理ゲートの数も伴う。
論文 参考訳(メタデータ) (2023-02-01T06:35:50Z) - Scalable algorithm simplification using quantum AND logic [18.750481652943005]
我々は、コストを削減し、キー量子回路の実行を可能にする AND 論理の量子バージョンを実装している。
高温超伝導量子プロセッサにおいて,最大8キュービットの高密度一般化トフォリゲートとGroverの探索アルゴリズムを64エントリの探索空間で低深度合成する。
論文 参考訳(メタデータ) (2021-12-30T04:25:39Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Special-Purpose Quantum Processor Design [2.275405513780208]
量子ビットの完全接続は、ほとんどの量子アルゴリズムにおいて必要である。
スワップゲートを挿入することで、未結合キュービット間の2量子ゲートが可能となり、計算結果の忠実度が大幅に低下する。
本稿では,異なる量子アルゴリズムに適した構造を設計できる特殊目的量子プロセッサ設計法を提案する。
論文 参考訳(メタデータ) (2021-02-01T23:26:15Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting
Circuits [4.354697470999286]
超伝導回路上での普遍ホロノミック量子ゲートの簡易実装を提案する。
提案手法は従来よりも堅牢であり,スケーラブルなフォールトトレラント量子計算のための代替戦略として有望なものである。
論文 参考訳(メタデータ) (2020-04-23T13:26:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。