論文の概要: Design of secure and robust cognitive system for malware detection
- arxiv url: http://arxiv.org/abs/2208.02310v1
- Date: Wed, 3 Aug 2022 18:52:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-05 13:04:04.431469
- Title: Design of secure and robust cognitive system for malware detection
- Title(参考訳): マルウェア検出のための安全で堅牢な認知システムの設計
- Authors: Sanket Shukla
- Abstract要約: インプットサンプルに摂動をインテリジェントに作り、付加することで、敵対するサンプルが生成される。
この論文の目的は、重要なシステムのセキュリティ問題に対処することである。
ステルス性マルウェアを検出する新しい手法が提案されている。
- 参考スコア(独自算出の注目度): 0.571097144710995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning based malware detection techniques rely on grayscale images
of malware and tends to classify malware based on the distribution of textures
in graycale images. Albeit the advancement and promising results shown by
machine learning techniques, attackers can exploit the vulnerabilities by
generating adversarial samples. Adversarial samples are generated by
intelligently crafting and adding perturbations to the input samples. There
exists majority of the software based adversarial attacks and defenses. To
defend against the adversaries, the existing malware detection based on machine
learning and grayscale images needs a preprocessing for the adversarial data.
This can cause an additional overhead and can prolong the real-time malware
detection. So, as an alternative to this, we explore RRAM (Resistive Random
Access Memory) based defense against adversaries. Therefore, the aim of this
thesis is to address the above mentioned critical system security issues. The
above mentioned challenges are addressed by demonstrating proposed techniques
to design a secure and robust cognitive system. First, a novel technique to
detect stealthy malware is proposed. The technique uses malware binary images
and then extract different features from the same and then employ different
ML-classifiers on the dataset thus obtained. Results demonstrate that this
technique is successful in differentiating classes of malware based on the
features extracted. Secondly, I demonstrate the effects of adversarial attacks
on a reconfigurable RRAM-neuromorphic architecture with different learning
algorithms and device characteristics. I also propose an integrated solution
for mitigating the effects of the adversarial attack using the reconfigurable
RRAM architecture.
- Abstract(参考訳): 機械学習に基づくマルウェア検出技術は、マルウェアのグレースケール画像に依存しており、グレーカル画像のテクスチャの分布に基づいてマルウェアを分類する傾向がある。
機械学習の技術が示す進歩と有望な結果に加えて、攻撃者は敵のサンプルを生成することで脆弱性を悪用することができる。
インプットサンプルに摂動をインテリジェントに作り、付加することで、敵対するサンプルを生成する。
ソフトウェアベースの敵対的攻撃や防御の多くは存在する。
敵に対抗するため、機械学習とグレースケール画像に基づく既存のマルウェア検出には、敵データに対する前処理が必要である。
これによりオーバーヘッドが増大し、リアルタイムのマルウェア検出が長引く可能性がある。
そこで、これに代わるものとして、RRAM(Resistive Random Access Memory)ベースの敵に対する防御について検討する。
したがって、この論文の目的は、上記の重要なシステムセキュリティ問題に対処することである。
上記の課題は、安全で堅牢な認知システムを設計するための提案手法を示すことによって解決される。
まず,ステルスマルウェアを検出する新しい手法を提案する。
この技術はマルウェアのバイナリイメージを使用し、異なる特徴を抽出し、得られたデータセットに異なるML分類器を使用する。
その結果,この手法は,抽出した特徴に基づくマルウェアの分類に有効であることがわかった。
次に,学習アルゴリズムとデバイス特性の異なる再構成可能なrram-neuromorphicアーキテクチャに対する敵意攻撃の効果を実証する。
また、再構成可能なRRAMアーキテクチャを用いて、敵攻撃の効果を緩和する統合ソリューションを提案する。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Obfuscated Malware Detection: Investigating Real-world Scenarios through Memory Analysis [0.0]
本稿では,メモリダンプ解析による簡易かつ費用対効果の高いマルウェア検出システムを提案する。
この研究は、現実世界のシナリオをシミュレートするために設計されたCIC-MalMem-2022データセットに焦点を当てている。
メモリダンプ内の難読化マルウェアの検出において,決定木,アンサンブル法,ニューラルネットワークなどの機械学習アルゴリズムの有効性を評価する。
論文 参考訳(メタデータ) (2024-04-03T00:13:23Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Self-Supervised Vision Transformers for Malware Detection [0.0]
本稿では、視覚変換器(ViT)アーキテクチャに基づくマルウェア検出のための自己超越型ディープラーニングモデルであるSHERLOCKを提案する。
提案手法は, マクロF1スコアが.497, 491で, マルチクラスマルウェア分類における最先端技術よりも優れている。
論文 参考訳(メタデータ) (2022-08-15T07:49:58Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - GANG-MAM: GAN based enGine for Modifying Android Malware [1.6799377888527687]
機械学習に基づくマルウェア検出は、敵の攻撃に対して脆弱である。
そこで我々は,Androidのマルウェアを強力に回避し,悪質なプログラムを修正するための特徴ベクトルを生成するシステムを提案する。
論文 参考訳(メタデータ) (2021-09-27T18:36:20Z) - A Novel Malware Detection Mechanism based on Features Extracted from
Converted Malware Binary Images [0.22843885788439805]
マルウェアのバイナリイメージを使用して、異なる特徴を抽出し、得られたデータセットに異なるML分類器を用いる。
本手法は,抽出した特徴に基づくマルウェアの分類に成功していることを示す。
論文 参考訳(メタデータ) (2021-04-14T06:55:52Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNNは、制限なく回避可能なマルウェアバリアントを自動的に生成する新しいアプローチです。
MalRNNは、3つの最近のディープラーニングベースのマルウェア検出器を効果的に回避し、現在のベンチマークメソッドを上回ります。
論文 参考訳(メタデータ) (2020-12-14T22:54:53Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。