論文の概要: Analyzing social media with crowdsourcing in Crowd4SDG
- arxiv url: http://arxiv.org/abs/2208.02689v1
- Date: Thu, 4 Aug 2022 14:42:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-05 13:05:22.910798
- Title: Analyzing social media with crowdsourcing in Crowd4SDG
- Title(参考訳): Crowd4SDGにおけるクラウドソーシングによるソーシャルメディアの分析
- Authors: Carlo Bono, Mehmet O\u{g}uz M\"ul\^ay\.im, Cinzia Cappiello, Mark
Carman, Jesus Cerquides, Jose Luis Fernandez-Marquez, Rosy Mondardini,
Edoardo Ramalli, and Barbara Pernici
- Abstract要約: 本研究は,ソーシャルメディアの分析,特に緊急時におけるフレキシブルな支援を提供するアプローチを提案する。
焦点は、ソーシャルメディア投稿に含まれる画像やテキストを分析し、コンテンツのフィルタリング、分類、位置決めのための一連の自動データ処理ツールである。
このようなサポートには、自動ツールを設定するためのフィードバックと提案、市民からのインプットを集めるためのクラウドソーシングの両方が含まれる。
- 参考スコア(独自算出の注目度): 1.1403672224109254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social media have the potential to provide timely information about emergency
situations and sudden events. However, finding relevant information among
millions of posts being posted every day can be difficult, and developing a
data analysis project usually requires time and technical skills. This study
presents an approach that provides flexible support for analyzing social media,
particularly during emergencies. Different use cases in which social media
analysis can be adopted are introduced, and the challenges of retrieving
information from large sets of posts are discussed.
The focus is on analyzing images and text contained in social media posts and
a set of automatic data processing tools for filtering, classification, and
geolocation of content with a human-in-the-loop approach to support the data
analyst. Such support includes both feedback and suggestions to configure
automated tools, and crowdsourcing to gather inputs from citizens. The results
are validated by discussing three case studies developed within the Crowd4SDG
H2020 European project.
- Abstract(参考訳): ソーシャルメディアは、緊急状況や突然の出来事に関するタイムリーな情報を提供する可能性がある。
しかし、毎日投稿される数百万の投稿の中から関連する情報を見つけることは難しく、データ分析プロジェクトの開発には時間と技術スキルが必要となる。
本研究は,ソーシャルメディア,特に緊急時の分析に柔軟なサポートを提供するアプローチを提案する。
ソーシャルメディア分析が適用可能なさまざまなユースケースを導入し、大量の投稿から情報を取得することの課題について論じる。
その焦点は、ソーシャルメディア投稿に含まれる画像やテキストを分析し、データアナリストをサポートするための人道的なアプローチでコンテンツのフィルタリング、分類、位置決めを行う一連の自動データ処理ツールである。
このようなサポートには、自動化ツールの設定のためのフィードバックと提案、市民からのインプットを集めるためのクラウドソーシングが含まれている。
この結果は、crowd4sdg h2020ヨーロッパプロジェクトで開発された3つのケーススタディで検証される。
関連論文リスト
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - CReMa: Crisis Response through Computational Identification and Matching of Cross-Lingual Requests and Offers Shared on Social Media [5.384787836425144]
危機の時代には、ソーシャルメディアプラットフォームはコミュニケーションの促進と資源の調整において重要な役割を担っている。
本稿では,CReMa(Crisis Response Matcher)を提案する。
16言語でヘルプ検索をシミュレートし,ソーシャルメディアに支援を提供する新しい多言語データセットを提案する。
論文 参考訳(メタデータ) (2024-05-20T09:30:03Z) - SMP Challenge: An Overview and Analysis of Social Media Prediction Challenge [63.311045291016555]
ソーシャルメディアの人気予測(SMPP)は、オンライン投稿の今後の人気値を自動予測する重要なタスクである。
本稿では,課題,データ,研究の進展について要約する。
論文 参考訳(メタデータ) (2024-05-17T02:36:14Z) - Time Series Analysis of Key Societal Events as Reflected in Complex
Social Media Data Streams [0.9790236766474201]
本研究では,ニッチなソーシャルメディアプラットフォームであるGABと,確立されたメッセージングサービスであるTelegramの物語進化について検討する。
我々のアプローチは、複数のソーシャルメディアドメインを調査し、他の方法では見えない重要な情報を排除するための新しいモードである。
主な知見は,(1) 時間線をデコンストラクトして, 解釈を改善するための有用なデータ機能を提供すること,(2) 一般化の基盤を提供する方法論を適用すること,である。
論文 参考訳(メタデータ) (2024-03-11T18:33:56Z) - Social Intelligence Data Infrastructure: Structuring the Present and Navigating the Future [59.78608958395464]
私たちは、包括的な社会AI分類と480のNLPデータセットからなるデータライブラリで構成される、ソーシャルAIデータインフラストラクチャを構築しています。
インフラストラクチャにより、既存のデータセットの取り組みを分析し、異なるソーシャルインテリジェンスの観点から言語モデルのパフォーマンスを評価することができます。
多面的なデータセットの必要性、言語と文化の多様性の向上、より長期にわたる社会的状況、そして将来のソーシャルインテリジェンスデータ活動におけるよりインタラクティブなデータの必要性が示されている。
論文 参考訳(メタデータ) (2024-02-28T00:22:42Z) - GPT-4V(ision) as A Social Media Analysis Engine [77.23394183063238]
本稿では,GPT-4Vのソーシャルマルチメディア分析能力について考察する。
我々は、感情分析、ヘイトスピーチ検出、フェイクニュース識別、人口推定、政治的イデオロギー検出を含む5つの代表的なタスクを選択する。
GPT-4Vはこれらのタスクにおいて顕著な効果を示し、画像とテキストのペアの理解、文脈と文化の認識、広義のコモンセンス知識などの強みを示している。
論文 参考訳(メタデータ) (2023-11-13T18:36:50Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
ソーシャルメディアプラットフォームにまたがる膨大なユーザー投稿は、主に人工知能(AI)のユースケースに使われていない。
自然言語処理(NLP)は、コーパス(corpora)として知られるドキュメントの体系を利用して、人間のような言語理解でコンピュータを訓練するAIのサブフィールドである。
本研究は, 教師なし解析の応用により, コンピュータがプラスティック手術に対する否定的, 肯定的, 中立的なユーザ感情を予測できることを示した。
論文 参考訳(メタデータ) (2023-07-05T20:16:20Z) - EDSA-Ensemble: an Event Detection Sentiment Analysis Ensemble
Architecture [63.85863519876587]
Sentiment Analysisを使って、イベントに属する各メッセージの極性やイベント全体を理解することで、オンラインソーシャルネットワークにおける重要なトレンドやダイナミクスに関する一般的な感情や個人の感情をよりよく理解することができます。
本研究では,ソーシャルメディアから現在起きているイベントの極性検出を改善するために,イベント検出と知覚分析を用いた新しいアンサンブルアーキテクチャEDSA-Ensembleを提案する。
論文 参考訳(メタデータ) (2023-01-30T11:56:08Z) - Time-aware topic identification in social media with pre-trained
language models: A case study of electric vehicles [1.2891210250935146]
事前学習言語モデルを用いた時間認識型トピック識別手法を提案する。
提案手法は,言語モデルを用いて時間変化トピックを追跡する動的関数と,将来有望なトピックを探索する出現スコア関数の2段階からなる。
論文 参考訳(メタデータ) (2022-10-11T04:50:10Z) - Designing a Social Media Analytics Dashboard for Government Agency
Crisis Communications [0.0]
政府機関は、危機時にソーシャルメディアを口コミとして利用するために、ますますソーシャルメディアに目を向けている。
政府機関は、公共の利益のためにソーシャルメディアデータを分析するためのツールを必要としている。
本稿では,地方自治体向けのソーシャルメディア分析ダッシュボードの開発を指導するデザインサイエンス研究手法を提案する。
論文 参考訳(メタデータ) (2022-02-11T10:41:01Z) - Curating Social Media Data [0.0]
本稿では,ソーシャルデータのクリーン化とキュレーションを可能にするデータキュレーションパイプラインであるCrowdCorrectを提案する。
当社のパイプラインは,既存の社内ツールを使用してソーシャルメディアデータのコーパスから自動機能抽出を行う。
このパイプラインの実装には、生データをキュレートするクラウドユーザの貢献を促進するために、マイクロタスクを自動生成するツールセットも含まれている。
論文 参考訳(メタデータ) (2020-02-21T10:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。