Analog information decoding of bosonic quantum LDPC codes
- URL: http://arxiv.org/abs/2311.01328v2
- Date: Mon, 10 Jun 2024 06:47:49 GMT
- Title: Analog information decoding of bosonic quantum LDPC codes
- Authors: Lucas Berent, Timo Hillmann, Jens Eisert, Robert Wille, Joschka Roffe,
- Abstract summary: We propose novel decoding methods that explicitly exploit the syndrome information obtained from a bosonic qubit readout.
Our results lay the foundation for general decoding algorithms using analog information and demonstrate promising results in the direction of fault-tolerant quantum computation.
- Score: 3.34006871348377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction is crucial for scalable quantum information processing applications. Traditional discrete-variable quantum codes that use multiple two-level systems to encode logical information can be hardware-intensive. An alternative approach is provided by bosonic codes, which use the infinite-dimensional Hilbert space of harmonic oscillators to encode quantum information. Two promising features of bosonic codes are that syndrome measurements are natively analog and that they can be concatenated with discrete-variable codes. In this work, we propose novel decoding methods that explicitly exploit the analog syndrome information obtained from the bosonic qubit readout in a concatenated architecture. Our methods are versatile and can be generally applied to any bosonic code concatenated with a quantum low-density parity-check (QLDPC) code. Furthermore, we introduce the concept of quasi-single-shot protocols as a novel approach that significantly reduces the number of repeated syndrome measurements required when decoding under phenomenological noise. To realize the protocol, we present a first implementation of time-domain decoding with the overlapping window method for general QLDPC codes, and a novel analog single-shot decoding method. Our results lay the foundation for general decoding algorithms using analog information and demonstrate promising results in the direction of fault-tolerant quantum computation with concatenated bosonic-QLDPC codes.
Related papers
- Decoding Quantum LDPC Codes Using Graph Neural Networks [52.19575718707659]
We propose a novel decoding method for Quantum Low-Density Parity-Check (QLDPC) codes based on Graph Neural Networks (GNNs)
The proposed GNN-based QLDPC decoder exploits the sparse graph structure of QLDPC codes and can be implemented as a message-passing decoding algorithm.
arXiv Detail & Related papers (2024-08-09T16:47:49Z) - Breadth-first graph traversal union-find decoder [0.0]
We develop variants of the union-find decoder that simplify its implementation and provide potential decoding speed advantages.
We show how these methods can be adapted to decode non-topological quantum low-density-parity-check codes.
arXiv Detail & Related papers (2024-07-22T18:54:45Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
arXiv Detail & Related papers (2023-01-24T14:17:07Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Quantum Error Correction via Noise Guessing Decoding [0.0]
Quantum error correction codes (QECCs) play a central role in both quantum communications and quantum computation.
This paper shows that it is possible to both construct and decode QECCs that can attain the maximum performance of the finite blocklength regime.
arXiv Detail & Related papers (2022-08-04T16:18:20Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z) - Efficient Concatenated Bosonic Code for Additive Gaussian Noise [0.0]
Bosonic codes offer noise resilience for quantum information processing.
We propose using a Gottesman-Kitaev-Preskill code to detect discard error-prone qubits and a quantum parity code to handle residual errors.
Our work may have applications in a wide range of quantum computation and communication scenarios.
arXiv Detail & Related papers (2021-02-02T08:01:30Z) - Quantum repeaters based on concatenated bosonic and discrete-variable
quantum codes [7.022007590511487]
We propose to encode transmitted qubits in a bosond code consisting of two levels.
On the first level we use a continuous-variable GKP code encoding the qubit in a single bosonic mode.
On the second level we use a small discrete-variable code.
arXiv Detail & Related papers (2020-11-30T18:14:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.