論文の概要: MAGPIE: Machine Automated General Performance Improvement via Evolution
of Software
- arxiv url: http://arxiv.org/abs/2208.02811v1
- Date: Thu, 4 Aug 2022 17:58:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-05 12:11:50.399954
- Title: MAGPIE: Machine Automated General Performance Improvement via Evolution
of Software
- Title(参考訳): magpie: ソフトウェアの進化による機械自動一般性能向上
- Authors: Aymeric Blot and Justyna Petke
- Abstract要約: MAGPIEは統合されたソフトウェア改善フレームワークである。
共通の編集シーケンスに基づく表現を提供し、特定の改善テクニックから探索プロセスを分離する。
- 参考スコア(独自算出の注目度): 19.188864062289433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performance is one of the most important qualities of software. Several
techniques have thus been proposed to improve it, such as program
transformations, optimisation of software parameters, or compiler flags. Many
automated software improvement approaches use similar search strategies to
explore the space of possible improvements, yet available tooling only focuses
on one approach at a time. This makes comparisons and exploration of
interactions of the various types of improvement impractical.
We propose MAGPIE, a unified software improvement framework. It provides a
common edit sequence based representation that isolates the search process from
the specific improvement technique, enabling a much simplified synergistic
workflow. We provide a case study using a basic local search to compare
compiler optimisation, algorithm configuration, and genetic improvement. We
chose running time as our efficiency measure and evaluated our approach on four
real-world software, written in C, C++, and Java.
Our results show that, used independently, all techniques find significant
running time improvements: up to 25% for compiler optimisation, 97% for
algorithm configuration, and 61% for evolving source code using genetic
improvement. We also show that up to 10% further increase in performance can be
obtained with partial combinations of the variants found by the different
techniques. Furthermore, the common representation also enables simultaneous
exploration of all techniques, providing a competitive alternative to using
each technique individually.
- Abstract(参考訳): パフォーマンスはソフトウェアの最も重要な品質のひとつです。
そのため、プログラム変換、ソフトウェアパラメータの最適化、コンパイラフラグなど、いくつかのテクニックが提案されている。
多くの自動化されたソフトウェア改善アプローチは、可能な改善の空間を探索するために、同様の検索戦略を使用している。
これは、様々な種類の改善の相互作用の比較と探索を非現実的に行う。
我々は、統合ソフトウェア改善フレームワークであるmagpieを提案する。
共通の編集シーケンスに基づく表現を提供し、特定の改善テクニックから探索プロセスを分離し、より単純化された相乗的ワークフローを可能にする。
コンパイラの最適化,アルゴリズム構成,遺伝的改良を比較するために,基本局所探索を用いたケーススタディを提供する。
実行時間を効率測定として選択し、C、C++、Javaで書かれた4つの現実世界ソフトウェアに対するアプローチを評価しました。
コンパイラ最適化の最大25%、アルゴリズム構成の97%、遺伝的改良を用いたソースコードの進化の61%である。
また, 異なる手法で検出された変種を部分的組み合わせることで, 最大10%の性能向上が達成できることを示した。
さらに、共通表現はすべてのテクニックの同時探索を可能にし、それぞれのテクニックを個別に使用するための競合的な代替手段を提供する。
関連論文リスト
- Should AI Optimize Your Code? A Comparative Study of Current Large Language Models Versus Classical Optimizing Compilers [0.0]
大規模言語モデル(LLM)は、コード最適化方法論に革命をもたらすAI駆動アプローチの可能性に関する興味深い疑問を提起する。
本稿では、GPT-4.0とCodeLlama-70Bの2つの最先端大言語モデルと従来の最適化コンパイラの比較分析を行う。
論文 参考訳(メタデータ) (2024-06-17T23:26:41Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
大規模言語モデル(LLM)は、幅広いプログラミングタスクを解く上で強力な能力を示している。
本稿では,パフォーマンス向上に着目したコード最適化について検討する。
論文 参考訳(メタデータ) (2024-06-17T16:10:10Z) - Learning Performance-Improving Code Edits [107.21538852090208]
本稿では,大規模言語モデル(LLM)を高レベルプログラム最適化に適用するためのフレームワークを提案する。
まず、競争力のある77,000以上のC++プログラミングサブミッションペアによる、人間のプログラマによるパフォーマンス改善編集のデータセットをキュレートする。
提案手法は,検索をベースとした少数ショットプロンプトとチェーン・オブ・シンクレットを提案し,その微調整には,自己再生に基づく性能条件付き生成と合成データ拡張が含まれる。
論文 参考訳(メタデータ) (2023-02-15T18:59:21Z) - Massively Parallel Genetic Optimization through Asynchronous Propagation
of Populations [50.591267188664666]
Propulateは、グローバル最適化のための進化的最適化アルゴリズムとソフトウェアパッケージである。
提案アルゴリズムは, 選択, 突然変異, 交叉, 移動の変種を特徴とする。
Propulateは解の精度を犠牲にすることなく、最大で3桁高速であることがわかった。
論文 参考訳(メタデータ) (2023-01-20T18:17:34Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - Learning to Superoptimize Real-world Programs [79.4140991035247]
本稿では,ニューラルシークエンス・ツー・シーケンス・モデルを用いて,実世界のプログラムを最適化するフレームワークを提案する。
我々は、x86-64アセンブリでオープンソースプロジェクトから抽出された25万以上の実世界の関数からなるデータセットであるBig Assemblyベンチマークを紹介した。
論文 参考訳(メタデータ) (2021-09-28T05:33:21Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
従来の手法に関する進化的アルゴリズムの利点は、文献で大いに議論されている。
粒子群はそのような利点を共有しているが、計算コストの低減と実装の容易さが要求されるため、進化的アルゴリズムよりも優れている。
本論文は, それらのチューニングについて検討するものではなく, 従来の研究から汎用的な設定を抽出し, 様々な問題を最適化するために, 事実上同じアルゴリズムを用いている。
論文 参考訳(メタデータ) (2021-01-25T02:06:30Z) - Transferable Graph Optimizers for ML Compilers [18.353830282858834]
計算グラフ最適化(GO)のためのエンドツーエンドで転送可能な深層強化学習法を提案する。
GOは個々のノードに対して自動回帰ではなく,グラフ全体の決定を生成する。
GOは、人間の専門家よりも21%改善し、先行技術よりも18%改善し、15倍早く収束する。
論文 参考訳(メタデータ) (2020-10-21T20:28:33Z) - A survey on dragonfly algorithm and its applications in engineering [29.190512851078218]
トンボのアルゴリズムは2016年に開発され、研究者が様々な分野の幅広い用途と応用を最適化するために用いたアルゴリズムの1つである。
この研究は、実世界の最適化問題を解決するための手法の頑健さと、複雑な最適化問題を改善するためのその欠如に対処した。
論文 参考訳(メタデータ) (2020-02-19T20:23:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。