Brain Lesion Synthesis via Progressive Adversarial Variational
Auto-Encoder
- URL: http://arxiv.org/abs/2208.03203v1
- Date: Fri, 5 Aug 2022 14:39:06 GMT
- Title: Brain Lesion Synthesis via Progressive Adversarial Variational
Auto-Encoder
- Authors: Jiayu Huo, Vejay Vakharia, Chengyuan Wu, Ashwini Sharan, Andrew Ko,
Sebastien Ourselin, Rachel Sparks
- Abstract summary: Region of interest (ROI) segmentation before and after laser interstitial thermal therapy (LITT) would enable automated lesion quantification.
CNNs are state-of-the-art solutions for ROI segmentation, but require large amounts of annotated data during the training.
We propose a progressive brain lesion synthesis framework (PAVAE) to expand both the quantity and diversity of the training dataset.
- Score: 0.9954435559869312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Laser interstitial thermal therapy (LITT) is a novel minimally invasive
treatment that is used to ablate intracranial structures to treat mesial
temporal lobe epilepsy (MTLE). Region of interest (ROI) segmentation before and
after LITT would enable automated lesion quantification to objectively assess
treatment efficacy. Deep learning techniques, such as convolutional neural
networks (CNNs) are state-of-the-art solutions for ROI segmentation, but
require large amounts of annotated data during the training. However,
collecting large datasets from emerging treatments such as LITT is impractical.
In this paper, we propose a progressive brain lesion synthesis framework
(PAVAE) to expand both the quantity and diversity of the training dataset.
Concretely, our framework consists of two sequential networks: a mask synthesis
network and a mask-guided lesion synthesis network. To better employ extrinsic
information to provide additional supervision during network training, we
design a condition embedding block (CEB) and a mask embedding block (MEB) to
encode inherent conditions of masks to the feature space. Finally, a
segmentation network is trained using raw and synthetic lesion images to
evaluate the effectiveness of the proposed framework. Experimental results show
that our method can achieve realistic synthetic results and boost the
performance of down-stream segmentation tasks above traditional data
augmentation techniques.
Related papers
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Self-supervised Brain Lesion Generation for Effective Data Augmentation of Medical Images [0.9626666671366836]
We propose a framework to efficiently generate new samples for training a brain lesion segmentation model.
We first train a lesion generator, based on an adversarial autoencoder, in a self-supervised manner.
Next, we utilize a novel image composition algorithm, Soft Poisson Blending, to seamlessly combine synthetic lesions and brain images.
arXiv Detail & Related papers (2024-06-21T01:53:12Z) - 3D MRI Synthesis with Slice-Based Latent Diffusion Models: Improving Tumor Segmentation Tasks in Data-Scarce Regimes [2.8498944632323755]
We propose a novel slice-based latent diffusion architecture to address the complexities of volumetric data generation.
This approach extends the joint distribution modeling of medical images and their associated masks, allowing a simultaneous generation of both under data-scarce regimes.
Our architecture can be conditioned by tumor characteristics, including size, shape, and relative position, thereby providing a diverse range of tumor variations.
arXiv Detail & Related papers (2024-06-08T09:53:45Z) - Synthetic Data for Robust Stroke Segmentation [0.0]
Current deep learning-based approaches to lesion segmentation in neuroimaging often depend on high-resolution images and extensive annotated data.
This paper introduces a novel synthetic data framework tailored for stroke lesion segmentation.
Our approach trains models with label maps from healthy and stroke datasets, facilitating segmentation across both normal and pathological tissue.
arXiv Detail & Related papers (2024-04-02T13:42:29Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Generative Adversarial Networks based Skin Lesion Segmentation [7.9234173309439715]
We propose a novel adversarial learning-based framework called Efficient-GAN that uses an unsupervised generative network to generate accurate lesion masks.
It outperforms the current state-of-the-art skin lesion segmentation approaches with a Dice coefficient, Jaccard similarity, and Accuracy of 90.1%, 83.6%, and 94.5%, respectively.
We also design a lightweight segmentation framework (MGAN) that achieves comparable performance as EGAN but with an order of magnitude lower number of training parameters.
arXiv Detail & Related papers (2023-05-29T15:51:31Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Quality-aware semi-supervised learning for CMR segmentation [2.9928692313705505]
One of the challenges in developing deep learning algorithms for medical image segmentation is the scarcity of training data.
We propose a novel scheme that uses QC of the downstream task to identify high quality outputs of CMR segmentation networks.
In essence, this provides quality-aware augmentation of training data in a variant of SSL for segmentation networks.
arXiv Detail & Related papers (2020-09-01T17:18:22Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.