Crosstalk analysis in single hole-spin qubits within highly anisotropic g-tensors
- URL: http://arxiv.org/abs/2501.16464v1
- Date: Mon, 27 Jan 2025 19:52:03 GMT
- Title: Crosstalk analysis in single hole-spin qubits within highly anisotropic g-tensors
- Authors: Yaser Hajati, Irina Heinz, Guido Burkard,
- Abstract summary: We study the impact of crosstalk on qubit fidelities during single-qubit operations.<n>We propose optimized driving field conditions that can robustly synchronize Rabi oscillations and minimize crosstalk.<n>We identify a set of parameter values that enable nearly crosstalk-free single-qubit gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin qubits based on valence band hole states are highly promising for quantum information processing due to their strong spin-orbit coupling and ultrafast operation speed. As these systems scale up, achieving high-fidelity single-qubit operations becomes essential. However, mitigating crosstalk effects from neighboring qubits in larger arrays, particularly for anisotropic qubits with strong spin-orbit coupling, presents a significant challenge. We investigate the impact of crosstalk on qubit fidelities during single-qubit operations and derive an analytical equation that serves as a synchronization condition to eliminate crosstalk in anisotropic media. Our analysis proposes optimized driving field conditions that can robustly synchronize Rabi oscillations and minimize crosstalk, showing a strong dependence on qubit anisotropy and the orientation of the external magnetic field. Taking experimental data into our analysis, we identify a set of parameter values that enable nearly crosstalk-free single-qubit gates, thereby paving the way for scalable quantum computing architectures.
Related papers
- Characterisation of a quantum bus between two driven qubits [0.0]
We use driven qubits coupled to a harmonic oscillator to implement a $sqrtimathrmSWAP$-gate.
We analyze a qubit readout mechanism based on the detection of a shift of the harmonic oscillator's resonance frequency.
Our findings guide the implementation of high-fidelity quantum gates in experimental setups.
arXiv Detail & Related papers (2025-03-24T15:20:22Z) - Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum
Circuits [12.29963230632145]
We study the use of dynamical decoupling in characterizing undesired two-qubit couplings and the underlying single-qubit decoherence.
We develop a syncopated decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions.
arXiv Detail & Related papers (2024-03-12T17:18:35Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Mitigating crosstalk errors by randomized compiling: Simulation of the
BCS model on a superconducting quantum computer [41.94295877935867]
Crosstalk errors, stemming from CNOT two-qubit gates, are a crucial source of errors on numerous quantum computing platforms.
We develop and apply an extension of the randomized compiling protocol that includes a special treatment of neighboring qubits.
Our twirling of neighboring qubits is shown to dramatically improve the noise estimation protocol without the need to add new qubits or circuits.
arXiv Detail & Related papers (2023-05-03T18:00:02Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - The effect of fast noise on the fidelity of trapped-ions quantum gates [0.0]
We study the effect of fast noise on the fidelity of one- and two-qubit gates in a trapped-ion system.
Our analysis can help in guiding the deign of quantum hardware platforms and gates, improving their fidelity towards fault-tolerant quantum computing.
arXiv Detail & Related papers (2022-08-06T19:37:00Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Quantum crosstalk analysis for simultaneous gate operations on
superconducting qubits [12.776712619117092]
We study the impact of quantum crosstalk on simultaneous gate operations in a qubit architecture.
Our analysis shows that for microwave-driven single-qubit gates, the dressing from the qubit-qubit coupling can cause non-negligible cross-driving errors.
arXiv Detail & Related papers (2021-10-25T01:21:04Z) - Suppression of crosstalk in superconducting qubits using dynamical
decoupling [0.0]
Super superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors.
ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors.
We propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments on several IBM quantum cloud processors.
arXiv Detail & Related papers (2021-08-10T09:16:05Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Crosstalk analysis for single-qubit and two-qubit gates in spin qubit
arrays [0.0]
scaling up spin qubit systems requires high-fidelity single-qubit and two-qubit gates.
We analyze qubit fidelities impacted by crosstalk when performing single-qubit and two-qubit operations on neighbor qubits.
arXiv Detail & Related papers (2021-05-21T09:16:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.