SelfCoLearn: Self-supervised collaborative learning for accelerating
dynamic MR imaging
- URL: http://arxiv.org/abs/2208.03904v1
- Date: Mon, 8 Aug 2022 04:01:26 GMT
- Title: SelfCoLearn: Self-supervised collaborative learning for accelerating
dynamic MR imaging
- Authors: Juan Zou, Cheng Li, Sen Jia, Ruoyou Wu, Tingrui Pei, Hairong Zheng,
Shanshan Wang
- Abstract summary: This paper proposes a self-supervised collaborative learning framework (SelfCoLearn) for accurate dynamic MR image reconstruction from undersampled k-space data.
The proposed framework is equipped with three important components, namely, dual-network collaborative learning, reunderampling data augmentation and a specially designed co-training loss.
Results show that our method possesses strong capabilities in capturing essential and inherent representations for direct reconstructions from the undersampled k-space data.
- Score: 15.575332712603172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lately, deep learning has been extensively investigated for accelerating
dynamic magnetic resonance (MR) imaging, with encouraging progresses achieved.
However, without fully sampled reference data for training, current approaches
may have limited abilities in recovering fine details or structures. To address
this challenge, this paper proposes a self-supervised collaborative learning
framework (SelfCoLearn) for accurate dynamic MR image reconstruction from
undersampled k-space data. The proposed framework is equipped with three
important components, namely, dual-network collaborative learning,
reunderampling data augmentation and a specially designed co-training loss. The
framework is flexible to be integrated with both data-driven networks and
model-based iterative un-rolled networks. Our method has been evaluated on
in-vivo dataset and compared it to four state-of-the-art methods. Results show
that our method possesses strong capabilities in capturing essential and
inherent representations for direct reconstructions from the undersampled
k-space data and thus enables high-quality and fast dynamic MR imaging.
Related papers
- Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - PARCEL: Physics-based unsupervised contrastive representation learning
for parallel MR imaging [9.16860702327751]
This paper proposes a physics based unsupervised contrastive representation learning (PARCEL) method to speed up parallel MR imaging.
Specifically, PARCEL has three key ingredients to achieve direct deep learning from the undersampled k-space data.
A specially designed co-training loss is designed to guide the two networks to capture the inherent features and representations of the MR image.
arXiv Detail & Related papers (2022-02-03T10:09:19Z) - Self-Supervised Learning for MRI Reconstruction with a Parallel Network
Training Framework [24.46388892324129]
The proposed method is flexible and can be employed in any existing deep learning-based method.
The effectiveness of the method is evaluated on an open brain MRI dataset.
arXiv Detail & Related papers (2021-09-26T06:09:56Z) - One Network to Solve Them All: A Sequential Multi-Task Joint Learning
Network Framework for MR Imaging Pipeline [12.684219884940056]
A sequential multi-task joint learning network model is proposed to train a combined end-to-end pipeline.
The proposed framework is verified on MRB dataset, which achieves superior performance on other SOTA methods in terms of both reconstruction and segmentation.
arXiv Detail & Related papers (2021-05-14T05:55:27Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - Multi-task MR Imaging with Iterative Teacher Forcing and Re-weighted
Deep Learning [14.62432715967572]
We develop a re-weighted multi-task deep learning method to learn prior knowledge from the existing big dataset.
We then utilize them to assist simultaneous MR reconstruction and segmentation from the under-sampled k-space data.
Results show that the proposed method possesses encouraging capabilities for simultaneous and accurate MR reconstruction and segmentation.
arXiv Detail & Related papers (2020-11-27T09:08:05Z) - A Comparative Study of Existing and New Deep Learning Methods for
Detecting Knee Injuries using the MRNet Dataset [9.808620526969648]
This work presents a comparative study of existing and new techniques to detect knee injuries by leveraging Stanford's MRNet dataset.
All approaches are based on deep learning and we explore the comparative performances of transfer learning and a deep residual network trained from scratch.
arXiv Detail & Related papers (2020-10-05T12:27:18Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
arXiv Detail & Related papers (2020-07-18T03:08:13Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.